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PREFACE

This report contains the results of the first phase of a study of the stability
of attitude control systems acted upon by random perturbations, performed
from July 1965 to June 1966 at the General Precision Aerospace Research
Center under Contract NAS 12-48 with the Electronics Research Center,

National Aeronautics and Space Administration.

The principal investigator was Dr. Bernard Friedland; contributors included
Professor Philip E. Sarachik (New York University), Dr. Frederick E. Thau,
Mr. Jordan Ellis and Mr. Victor D. Cohen. Mr. William Cashman of the
Electronics Research Center served as NASA Technical Monitor. Professor
W. M. Wonham of Brown University provided a number of most fruitful dis-

cussions.
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1. INTRODUCTION

Over the past few years, dynamic processes with random excitations have been the subject
of increasing attention by investigators in the field of modern control theory. The growth of interest
in these problems can be attributed, in part, to the fact that many of the basic theoretical problems
of deterministic control theory are by now fairly well in hand. The "easy" problems have been solved,
and the difficulties inherent in the "hard" problems are widely recognized. Although practical appli=-
cation of the results of modern deterministic control theory is still not too common, the opportunities

for fundamental theoretical contributions appear to be greater in the area of stochastic control theory.

Random disturbances and changes in the process parameters (both of which can be loosely
interpreted as excitations) are always a practical problem in control system design. They are, in fact,
the reason underlying the very use of feedback control. Therefore, the results of stochastic control
theory can be expected to have significant impact on practical control system designs of the future,

particularly in space applications where lifetime and extreme precision of performance are at o premium.

The principal distinction between current approaches to randomly-excited control systems

make direct use of the differential equations governing the behavior of the process. The earlier
approach is concerned primarily with frequency-domain representations (spectral density, etc.) and

is consequently confined largely to the steady-state behavior of linear, time-invariant systems excited
by stationary white noise. The current approaches appear to be a natural extension of the deterministic
state-space techniques to systems with random excitations and liberate the study of randomly-excited

dynamic systems from the constraints imposed by the methods of frequency domain analysis.

The evolution of probabilities in state space is the general problem of interest. As we shall
endeavor to show subsequently, this evolution is governed by partial differential equations, the nature

of which depends on both the dynamic process under investigation and the characteristics of the




random excitation to the process. Although the approach to the study of randomly-excited dynamic
processes through the use of the equations governing the evolution of probabilities is a relatively recent
development in control theory, this approach has been used by physicists and mathematical statisticians
since the early part of the century. As early as 1905, Einstein [1] inferred from basic physical
considerations that the random motion of particles suspended in a fluid can be described by the diffusion
equation (the same partial differential equation that governs the conduction of heat in a solid). This

motion was first described by Robert Brown in 1826 and is now called Brownian motion. Generalization

of Einstein's results occupied a number of distinguished theoretical physicists during the early part

of the century. So many investigators were involved in these studies, that some of the fundamental
equations of the theory are identified by the names of different persons (much to the confusion of
workers in the field today. For example, the "Chapman-Kolmogorov equation”, referred to in section
3, is often known as the "Smoluchowski equation”.) The status of the theory from the physicisis's
viewpoint, as it had evolved from Einstein's work to the early 1940's, was reviewed in a monograph-

length paper by Chandrasekhar*[2] and in a paper by Wang and Uhlenbeck*[3].

Mathematical rigor and elegance were introduced to the theory of stochastic processes beginning
about 1930. The names of Wiener, Lévy, Kolmogorov, Feller, Doob, 1td, and Dynkin are prominently
associated with this work. The two-volume book by Dynkin [4] appears to be the most elegant and

comprehensive (if not readily comprehensible) treatment to date.

The main lines of investigation in modern deterministic control theory are stability theory and
optimum control theory. Similarly, these lines of investigation are being pursued in connection with

stochastic control theory. Our attention will be restricted to the problems associated with stability.

Early work on stochastic stability was done by Bertram and Sarachik [5] and by Kats and
Krasovskii [6] . These investigations were concerned with "stability in moment” and made use of a
stochastic version of Lyapunov’s second method. The practical deficiency of "stability in moment"
was pointed out by Kushner[7], who, along with Khasminskii [8], considered "almost-certain stability",
or "stability with probability one”, which is a more meaningful form of stability. Stochastic Lyapunov
theory was also employed in these investigations. Almost-certain stability is so strong a property that
it is not possessed even by stable deterministic systems when the random excitation is constantly-acting
white noise. Kushner, through the use of stochastic Lyapunov Theory [9], and Wonham, by means
of properties of differential operators [10] have been considering problems associated with estimating

lifetime in systems which are not stable with probability one.

* Six classic papers in the field are reprinted in N. Wax (ed.), Selected Papers on Noise and Stochastic
Processes, Dover Publications, New York, N.Y., 1954. This book includes the papers by Chandrasekhar
and by Wang and Uhlenbeck.
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The objectives of the investigation reported herein were as follows:
1. Organization of existing resuits and interpretation of these results in a framework which

is intuitively appealing.

2. Development of appropriate models for the sources of random disturbances acting upon

space vehicles.

3. Extension, where, possible of existing techniques, to the solution of significant problems.
4. Studies of typical control problems.
5. Identification of problems for further study.

It was felt that in making the existing theory more accessible to engineers it would be desirable
to derive the fundamenta! equations (“forward" and "backward" equation) for the evolution of Markov
processes with the minimum of mathematical sophistication. These derivations are contained in Sections
3and 4. Although the results obtained are formal, they can be accepted with confidence, since

rigorous developments are available [4].

The starting point for models of disturbance sources is the "Poisson impulse process” described
in Section 2. The integral of this process, as the number of impulses per unit time becomes infinite
and the areas of the impulses become infinitesimal, is the "Wiener process” which is the basis of most
analytical investigations. Mathematical properties of these processes are discussed in Section 2, and
estimates of the parameters of such processes for various physical disturbance sources are obtained in
Section 8,

"Confinement probability", i.e., the probability of not leaving a given region in state space
for a specified time interval starting at a point in this region, is considered in Section 5 as the most
natural extension of deterministic stability; we also believe that confinement probability is an important
consideration in design of space vehicle control systems. Analytical and numerical techniques for
estimation of confinement probability, and the "half-life” and "mean confinement time", which are
related thereto, are considered in Section 6. These techniques are used in Section 7 to perform some
calculations on several first- and second-order linear and nonlinear systems. Some of the implications

of these calculations as regards a typical space vehicle are discussed in Section 8.

Problems for further investigation, which include that of obtaining better estimates of the
statistical parameters of the random excitations, and of finding better analytical techniques for estimation

of lifeti:ne, are summarized in Section 9.



Two appendices are included. Appendix 1 is an annotated bibliography, and Appendix 2 is
a description of the computer program which was used for the Monte-Carlo simulations described

herein.




2. MODELS OF RANDOM EXCITATION

One of the major purposes of a control system is to maintain motion of the controlled object
within acceptable limits in the presence of random disturbances which cause the object to deviate
from the motion desired. In the case of space vehicles, the random disturbances can be caused by
extemal phenomena such as micrometeoroid bombardment or by internal phenomena such as the

motion of the vehicle occupants or the imprecise operation of the control system itself.

An analytical investigation of the behavior of an actual controlled space vehicle in the
presence of random disturbances entails the establishment of analytical models for the random
disturbance processes. These models must be simple enough to permit analytical calculations; at the
same time they must adequately represent the physical phenomena. The selection of models to
meet these requirements is a major probiem which requires much more attention than it has heretofore
received. In this investigation we have attempted to characterize several of the obvious sources of
random disturbances and to estimate the statistical parameters associated with these sources. The
discussion of our results is contained in Section 8 in which the models used are based on the idec!

models considered in the present section.

A random process consisting of impulses of random area (or "strength") and random arrival
times, as depicted in Figure 2-1a has intuitive appeal to the engineer who is accustomed to dealing
with deterministic linear systems. The response of such systems is obtained by superposition of the
impulse responses. For mathematical reasons , and also becouse the effect of the impulses is related
to the total area of the impulses, it is more convenient to deal with the integral of the impulsive
process of Figure 2-1a as depicted in Figure 2-1b. Consider now a time interval of duration dt
during which any number of transitions may occur. The probability that the total change in height

due to these transitions lies between z and z +dz is given by

[+

plz,dt) dz=Z P (dt}y (z)dz (2.1
n=0 " n
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where F:j(dt) is the probability that exactly n transitions occur in the interval dt and vy (z) dz
n
is the probability that the level change due to exactly n transitions lies between z and z +dz.
In most situations it is reasonable to assume that the probability of occurrence of exactly n transitions

in the interval dt has a Poisson distribution, i.e.,
P ) = e *'(x dr) Vil 2.2)

where )\ is the "average occurrence rate.” Hence, (2. 1) becomes

n
p(z, di)dz=e Adt b3 Qd)

RPN A (z) dz (2.3)

If the height at the beginning of the interval dt is specified as y, then, given this informa-
tion the probability p(x, dtly) dx that the height at the end of the interval lies between x and
x +dx is equal to the probability p(z, dt) dz that the change lies between z and z +dz
when x =z +y. Thus, from (2.3),

© n
Adt > {\ dt)

Pix, dtly) =e I

Y, =) (2.4)

A process with density (2.4) is called a Poisson step process. The original process of Figure 2-la

which is integrated to produce the Poisson step process may be referred to as a Poisson impulse
process.

Let y(z) dz be the probability that the height of a single step is between z and z +dz.
Then, provided the heights of the individual steps are independent, we have

ln(z) =y(z)*...* 7(2); 'yo(z) =§(z) (delta function) (2.5)

v

n-fold convolution

To avoid dealing with n~fold convolutions it is convenient to use the characteristic function

Clw ., dtly).

+m .
Cw,dtly) = [ 'V pk, dtly) d



® n
_ e—)xdf +ivy 5 (Adt (v )]

= z = (2.6)

=expl - Mt (1-T@))+Jvy]

where +

T = eV y@)d i=

is the characteristic function of the probability density function of the area of one impulse. The

characteristic function (2.6) can be written
C (v, dfly)={exp[r(u)-1+a%ln", A=\ dt (2.7)

where A is the average number of impulses in the interval dt. Hence it is seen that C(v, dt ly)
is the characteristic function for the sum of A identically-distributed random variables, each of

which has the characteristic function

B(1) =exp [T(¥) -1+J (vy/N] (2.8)

By virtue of the central-limit theorem, as A = «,C (v, dt |y) approaches the characteristic
function of a Gaussian random variable with mean Ay and variance A2, where p and &°
are the mean and variance, respectively, of the density function corresponding to B (V) :

Y0 ]
b=t g -k

(when v (x) has zero mean)

52 4> B(v)

(2.9)
dv?®

Consequently 2 a
C(v, dtly)=exp (Jvy - _Agz_"z_ - exp (Jvy - 2 dzfv )

where 02 =X &°. The corresponding probability density function p(x, dt|y) is given by




p(x, dtiy) = — exp <£—L)2 (2.10)

/T dto 202 di
where p(x, dt|y) dx is the probability that the height at time t +dt lies between x and x +dx ,
given that the height at time t was y .

A process having the probability density function (2. 10) is called a Wiener process. Thus,

a Wiener process can be regarded as the limiting form of a Poisson step process as the average
transition rate becomes infinite and the variance of the transitions approaches zero in such a manner
that )«32 = 02 = const , as visualized in Figure 2-1d.

The Wiener process is thus visualized as the result of integrating a Poisson process and then
letting the transition rate become infinite. An alternate visualization of the Wiener process is
obtained by first letting the occurrence rate of the impulses becoming infinite (Figure 2-1c) and
then integrating the result. The random process obtained prior to the integration is a visualization
of white noise, the formal derivative of the Wiener process.

In classical engineering approaches, equation processes are characterized by either auto-
correlation functions (pxx(t) or spectral densities Sxx(w) . it has been shown [ 11] that the

"* of the Poisson step process (2.4) is

a2 2
S (W)= A0 o .11
XX w2 2

“spectral density

W
Thus, we see thatas X —~ «» and )t62 = 02 = constant the spectral density (2.11) does not change.

Thus, (2.11) also gives the spectral density of the Wiener process (2.10). Since the Poisson step
and Wiener process result from integrating Poisson impulse and white noises processes respectively,

we find that these "derivative" processes both have zero mean and spectral densities
_ 2
S w)=0 (2.12)
XX

or autocorre lation functions

Bt =0%6-1) @19

We see that knowledge of only spectral densities is not sufficient to distinguish between a white

noise and a Poisson impulse process or between a Wiener and a Poisson step process.

* This is formal, since the process is not stationary. 9



For reasons such as this we see that the classical engineering approach to the study of random
processes is not adequate in problems where distinctions between the underlying random processes

are of importance.

The Wiener process has properties which make it convenient to deal with in detailed
analytical calculations, and it thus serves as the source process in most theoretical studies. Since
in a physical process, however, there is always a finite upper limit on the number of occurrences
in any time interval, the Wiener process should be regarded as a convenient, but unattainable
abstraction. In situations in which the Wiener process or white noise, its derivative, lead to
results which do not appear consistent with reality, it would be well to examine whether the

difficulty can be avoided by the use of a more realistic model of the source process.
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3. EVOLUTION OF MARKOV PROCESSES

3.1 Chapman-Kolmogorov Equations

The basic problem in the study of stochastic processes is the mathematical description of the
manner in which characteristics of a process evolve in state space. As a first step towards obtaining this
description, consider a vector random process {X(t)} with components at time t being the

random variables Xz',(t) , 1=1,2, ..., n; X(t) thus denotes a random point of an n-dimensional

J J

Euclidean space. We will denote a possible value of the random component X?./ at time ¥ by X7

Any random process can be charocfenzed by its joint probability densities of all order
k, F (x1 , t];. .. ;x'< r) , where f (x], ], ... ,'xk tk)dx] dx2 . e dxk denotes the
joint probablhl'y of flndlng each component X in the range (x ' x.] + dxib at time t] , and in
the range (x ' x_f +dx, ) at time t2 « + ., and in the range (xL , x: + dxi) at time fk

A parhcular rcmdom process which may be used as a mathematical model for a large class of

physical processes is the Markov process which is defined by the additional property

f(x St ix T, ;...;x],t])=f(xk,t ) for t <t <...gt (3.1)

That is to say, for such processes the conditional probability that X(fk) be in a neighborhood of the

ko kpkel kel k=2 k=2 k, k-1 k-1 1 2 k
Ix kLt

point xk given that X(tt =x" (forall £ =1, ,..,k=1) is the same as the conditional pro-

kl k-], 1.k-l

bability given only that X(tk-]) = xk-l . The expression f"(x’< , b oIx ) is called the transi-

tion probability density of the Markov process.

Since, in general,

1

fk(X], t J e o o }Xk, fk)zf(x lxk ] ] k'] k"]

k-] 1 1 1
; .;x,t)fk_](x,f;...;x )

we find that for Markov processes, all finite order densities are given by

1 kk\kl

1 k-1 k-1
fx it f)—f(

k-1 1 .1
.t )fk_](x PRI .t )

(xk, tklxk-],tk-] k-l,tk_]lx'k-z,tk-z)-. o 2 t2‘)(]”1) f](x],t])

) f(x

11



Thus for a Markov process, all finite order joint densities are specified by the first order density f

and the transition probability density. In the remainder of the report we will write the transition
density (3.1)as f(x, tly, 7) where x denotes the value of X at the present time t and y de-

notes the value of X at the initial time 7 .

For a Markov process with 7 <s < t we have from the above expression

b ik six, 1) =f6c, tle, ) FE L sy, T) iy, 7) (3.2)

and

b Tix, 1) =f6c, tly, 7) fily, 7) (3.3)

Moreover, joint densities, by definition, satisfy

B Tix,t) = [ faly, 158, six, D)dt (3.4)

where J‘ denotes integration over the entire n=dimensional Euclidean space. Substitution of (3.2)

and (3.3) into (3.4) yields

foc, tly 1) = [f(x, tle , s) f(e, sly, 7) dt (3.5)

which is called the Chapman-Kolmogorov equation for transition densities and is a basic equation in

the study of Markov processes. It is important to note that although for a general random process the

right hand side of (3.5) depends on s, for a Markov process it is independent of se [T, t] .

A relation similar to (3.5) may be obtained for transition distributions, defined by

X
Foc, tyom) = [ fe Lty T & (3.6)
where j‘ means f] ‘e fx“

Upon integrating both sides of (3.5) with respect to x, interchanging the order of integration on the
right-hand side, we obtain

Flx, tly,m) =[Flx, tl, s) fg , sly, 7) dt 3.7)

which is the Chapman-Kolmogorov equation for transition distributions.




A Markov process is said to be stationary or to have a stationary probability density if

fx, tly . 7) =fx, t-Tly, 0)= plx, t - T|y) forall t=7
in which case the probability distribution function is also stationary:
Fix, tly, T)=Px, t = 7ly) forall t=z1

For stationary Markov processes it is easy to show that the Chapman-Kolmogorov equations (3.5) and
(3.7) become

plc, th)= [ ple,Tl2) ple, t=7ly) dz forall 7 <t (3.8)

Pix, tly)= J P(x, T|z) p(z, t = T|y) dz forall T<1t (3.9
Using the Chapman-Kolmogorov equation (3.5) and (3.7) we will derive partial differential equa-

tions for the evolution of f(x, tly, T) and F(x, tly, 7).

3.2 Forward and Backward Equations
Take 3/97 of both sides of (3.5) to obtain *

—ll—af("';r 1) - Jf(x, g, o) A& sly.m) = :7) g (3.10)

Similarly taking 3/3r of {3.7) gives

Foc e = [, ik, 0 Heosly.m) g (3.11)

Equations (3.10) and (3.11) are called backward equations and involve differentiation with respect

to the backward time variable 7.
The initial condition for (3. 10) is
fx, Tly, 1) =6(x~-y) (3.12)
and the initial condition for (3.11) is

F(xl T‘YI T) = ](XI Y) (3- ]3)

* Doob [12] shows that under certain continuity conditions on the process the required partial

derivatives exist.
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where the n-dimendional step function 1{y, x) is defined by

1, X, Sy forall t=1,2,...,n
Wy, x)= (3.14)
1,2, ...,n

0, x>y forany 1

By differentiating (3.5) with respect to the forward time variable t, a forward equation for the

transition density can be obtained. A forward equation for transition distributions, however, can be

obtained only under more restrictive conditions.

Useful differential forms of the forward and backward equation will now be derived for a

scalar stationary Markov process. Following a standard procedure [13] consider the integral

fp(x)—L--l-La (x,aff )dx

where p(x) is an arbitrary analytic function of x . Using the definition of the derivative,
f () (xl t )dx

Since, by (3.8)

Jim 2 [060 ot t+ath) b6, thl k@19

plx, t +Atly) fp(x, Atlz) p(z, tly) dz

@)
@ (. -\t
and p(x) EO 'LL!—— (x - z)

we have

fp(x) plx, t+Atly) dx =fp(z, tly) E L—(Z— [(x -z) p(x , Atlz) dx dz

Define the ith conditional moment by

By Aatl) = f(x - z)t plx, Atlz) dx (3.16)
polatk) = fp(x, Atlz) dx = 1

14




Then (3. 15) becomes
o (1)
fp(x) a ("&f bax = lim - fp(z, tly) tglf% Ky Btlz) dz

At-~0 At
3.17)
e 1 4
- 3 L [0 n @k, i
where
wy, (@tiz)
@) = lim ——— (3.18)
" a0 At
provided this limit exists uniformly in z forall 1 . Integration by parts of the integrals in
(3.17) gives
t) -t d*
0M60n,60 b, th) & = (1 [ pt2 i, ) px, ) o 3.19
dx

since p(x, t|z) is a density function and approaches zero with all its derivativesas x » £ ® .
Substituting (3. 19) into (3.17) and noting that p(x) is arbitrary we find that the transition density

function satisfies

t 1
pk,tly) . 3 D8 &) plx, t| r
=z & in 60 ple, th)] = Lxpbe, ty)] (3.20)
3t =1 11 axb 1 ¥ Py v) d..x PV i

which is called the forward equation for p(x, tly) since it involves differentiation with respect to

the forward time t and a linear operation on the forward state x . Equation (3.20) is also called

the "Boltzmann Equation" [14] . The differential operator .L; is called the forward operator of the

process. The initial and boundary conditions for (3.20) are

p(x,Oly) =6 (x = y) @3.21)

p(x, tly)~0 as x~+ @ » forall t.

A conditional expectation on a Markov process also satisfies a partial differential equation:

consider the expectation

altly) = ELXE)|X@) = y}= Jul) p(r, tly) d (3.22)

15



Then from the forward equation (3.20) we have

i
o (.t 9 I, ply, sk
IG(T -S|y)[Mé;s—M- R ( :2 L > 1dy=0 (3.23)

Apply the definition (3.22) of G(r - sly) to obtain

Jot -y 2L oy = [[ ooy p0r, 7 - sly) 2L oy oy (3.24)

Now, from the Chapman-Kolmogorov equation (3.8)

= [ju(X) PO\, T =sly) ply, sx) dy] =0

Therefore,

f ™) Mp(y, six) dy = - fu()\) p(A , T = sly) ply . SX) dy

and (3.24) becomes

Jotr-sy) Md = f[-—fu(x) PO, 7 = sly)d)] ply,six)dy IM p(y, slx) dy

(3.25)
Furthermore, from (3.19) we have
i
o (b3 )ply, sk) @ M) )
Joo-dp = G ——"—ay= Joy,d B ol =) (3.26)
i=1 dy = ay
Substitute (3.25) and (3.26) into (3.23) to give
_aur-sy) | @ nY e -sly)
fp(),I SlX)[ > - ‘l/E] | ] d)’ 0
Since ply, six) = 0 and is not identically zero forall y,
_85(r - sly) _ 2 7, 0) ata(r - sly) 3.97
Os 1=1 U! i @.27)
dy
Now, let T ~s =1 so that (3.27) becomes
a_t )_ ® 77-()') ai’—t -
2 3 o j(im: L 5tly) 6.28

which is the backward equation for G(t|y) since it involves a linear operation on the initial space

variaoble y . The differential operator ‘Cy is called the backward operator or differential generator

16




of the process. Note that by the definition of the adjoint [15] to a differential operator, '[x
and .[: are adjoint operators. The initial condition for (3.28) is G(0 ly) = a(y) a known function
of y . It is important to note that the transition distribution function P(x, tly) is a particular ex-

pectation, i.e.,

P, ty) = S 16c, X) p(h , tly) dr

where 1(x, A) is defined in (3.14). Similarly, the transition density satisfies the backward equation.
An important class of Markov processes is that in which the limits n,, (z) vanish for t > 2,

The forward equation (3.20) for such processes becomes

aplx , t 3
p(xaf ) _ ax i, &) plx, tiy)] + = ax2 n, () péx , Hy)] (3.29)
which is known as the Fokker-Planck equation. The corresponding backward equation is
- 2.,
ou(t ou(t 1 ot
B — ) B+ _JL;(z ) (3.30)

For the Wiener process having the transition density(2.10), it is found that n2(x) = 02 and
n, (x)=0 for 1 # 2. Hence the forward and backward equations both reduce to the diffusion equa-

tion
w_ o o
* 2 o2 (3.31)

which was obtained by Einstein in his study of Brownian motion.

For vector processes, (3.29) and (3.30) can be generalized to

2
aplx, tly) _ 3 1 g
Blgld - 5 2 by wpe 0+ 7 & e UACLLY

(3.32)
and -
ao (tly) _ () & ¢ty

where the vector h and the matrix H are defined analogously to (3. 18)

h) = plim V- 2) plx, ot{z) o (3.34)
. 1 Y
H@Ez) = Alfl-TO X3 f (x - z)x - z)’ plx, At|z) dx (3.35)

17



provided the limits analogous to nt(z) (which are tensors of rank 7 in vector processes) vanish for
i>2.

For the Poisson step process with density (2.4) the forward equation can be found from (3.20)
and (3.18). The moments By (at|z) of plx, &t|z) about z are obtained by inserting (2.4) into
(3.16) to give

® no_ ,
pi(ﬁflz) = nEO _()\nilf) e rat f(x -z)L Y, (x - z)dx (3.36)

By denoting the integral in (3.36) as By (which is independent of z) we get from the definition
(3.18)

My = My
Hence (3.20) gives
i i
apx, tiy) _ = (=1 3 , t
_ﬂf?m_ 2 ?;?] (z',!) ™ pix - l)’) (3.37)
- ox

as the forward equation. The corresponding backward equation from (3.28) is thus

——lLa‘_’gf Joy T a3 ———-‘-Y—ai‘_’(; ) (3.38)
= oy

=1 t!

These same results can be obtained in an alternate manner from (3.9) as follows. Substitute (2.4)

into (3.9) to obtain

“A(t-r) A-r) 3 D=l

6(z - y)dz + fP(x, 1lz) e T
n=1 n:

Pix, tly) = f Pix, T|z) e ‘yn(z -y)dz (3.39)

Since P(x, tly) is independent of the intermediate time T , we have 3P(x, tly)/ar =0 and
from (3.39)

n
0=xPkx, tly) + 9P(x 'a:JL) +f[8P(xa,TT|Z) + P(x, Tiz) Al nE]_B-SL;—r)L )’n(z -y)dz

n_] (3. 40)
+fP(x, 7|2) 23 n(A ¢ -:%] ) e -y d
n=
Upon setting T =t we obtain the result
a—-—ll’-”("é: )= -xPix, thy) + 2 [ Pix, tla) y, 2 - y) dz @.41)
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which is the integral form of the backward equation. Since the transition density p(x, t|y) also

satisfies the backward equation

,
Bpbetly) < xpie, tly) 40 b,z g -y g2 (3.42)
multiply both sides of (1) by ply, T - t|x) and integrate with respect toy to obtain

fgi%a’ffm ply, T-t|x) dy ='>\fp(xl ty) ply, 7 - t]x) dy

(3.43)
2 pbc, t) [y =) ply, T Hx) oy oz
Since
2 [ pte, tly) ply, 7 - th) dy = 2 plx , 1lx) =0
ot ot
we have
. t — , T =t
]ap(x_atlz) ply, T-tlx) dy == [pkx, tly) be—(%lx—)dy
and (3.43) becomes
, Tt
-fp(x,fly)gp—(uat—li)- dy ==X [px, tly) ply, 7 - th) dy 040
+>\fp(x, fly)[fyl(y -z) p(z, T - t|x) dz] dy
Since plx,t|y) is not identically zero (3.44) implies
-9l Tt - b, b+ 3 [l T ) 20y - 2) 2
which, upon relabeling variables, may be written as the forward equation
QP(X—’a:JL = -Aplx, f|>')+>\f P . tly) v,6c = n) dn (3.45)
A differential form of the forward equation (3.45) may be obtained as follows. Write (3.45) as
———-llap("é: = -xplx, tly) + 1 [ ol =, tly) v,(n) dn (3.46)

Expand p(x =7, tly) in Taylor series about 71 =0 and insert into (3.46) to give the forward

equation
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, - i .’
ap(xa,fflz) = =xpx, tly) +)\f7;§O - 1 a_E(iL_'lL) Ty ) dn

il
(3.47)

1
il aXL

xR bty
i=1

where m, is the ¢ moment of the density 'y](n) . Note that in a similar manner we can show

that the backward equation (3.42) leads to the differential form

© m 2
3, ty) _ t_ltaF’(_"'l.L) (3.48)

ot i=1 ayi’

il ™

3.3 Confinement Probability; Renewal Equation

A function which is useful in the study of stability of randomly excited systems is called the

"confinement probability” defined as

qltly) = Prob [X(s)e N forall se¢[0, t]|X(0) =yl (3.49)

where N is a finite region containing the origin. We will show that for a scalar Markov process

q(t|y) satisfies the backward equation (3. 11).

QOur demonstration will use the renewal equation for scalar Markov processes. Consider a
first-order, continuous Markov process {X(t)} with transition density function f(x, t]y, v) and
transition distribution function F(x, t|y, v) . Let the random variable T(zly, v) be the first
‘time that the state of the process is z given that the state was y at time v . Let R(z, ly, v)

and r{z, 1ly, v) be the distribution function and density function, respectively, of T(zly, v), i.e.,

Rz, Tly, v) = Prob {Tz|y, v) < 7} (3.50)

r@z, rly, v)dr =Pob fr < Tzly, v) < 7 +dr} (3.51)
Divide the time interval [t - v] into n'sub-intervals T, <t T i=0,1..., n=1,
where To=V and TSt Let Hetyr oo on b correspond to points inside these sub-intervals.

Then forany z (x gz gy)
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Prob {x < X(t) < x +dx|X(v) = y}
= Prob {x < X(t) < x +dx|X(tl) =z} . Prob {7 < Tely, v) = 7.} (3.52)

+ Prob fx < X(t) < x +dx|X(f2) =2z}« Prob {TI < Tizly, v) < 12}
+. ..+ Prob {x < X(t) < x +dxlX(tn) =z} Prob {Tn-l < Tely, v) < 'rn}

Equation (3.52) is based on the assumption that {X(t)} is a continuous Markov process and that the
occurrence of the state z for the first time in one sub-interval is mutually exclusive of the occurrence

of z for the first time in another sub-interval. Rewrite (3.52) as

t =t
Prob {x < X(t) < x +dx|X(v)=y} = nz Prob fx < X < x +dX‘|x(f_L) =2z} .
fl./=v
Prob fr, | < Tlely, V)57, 3.53)
fn"—'f
= L Prob {x < X(t) < x +dx|X(t,) =z} Prob {1, , <T@y, V)7, ,+4.}
b =v 4 i-1 i-1 i
where At =T,CT- Therefore, in the limitasn— » and A'L - 0, (3.53) reduces to the
renewal equation | 16]
t
fx, tly, v = f fix, tlz, T)rz, Tly, v) dr (3.54)
v

Notice that (3.54) may be considered to be a convolution in time whereas the Chapman-Kolmogorov

equations (3.5) and (3.7) may be regarded as convolutions in space.

We will use (3.54) to show that if F(x, t|y, v) satisfies the backward equation (3.11) then
tiz, Tly, v) and R(z, 7ly, v) satisfy the backward equation

Iz IT|ZI v - iz, TiE, s) MLLL) dg (3.55)
ov ov

Multiply both sides of (3.54) by a unit step (3. 14) and integrate over the state space to obtain

t
Fix, y, ¥ = f Fix, §z, ) rz, Tly, v) dr (3.56)

v
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Substitute (3.56) into both sides of (3.11). The left hand side of (3. 11) becomes

t
f Fix, z, 1) 9’—(-2’—;,&’—&:11' -Flx, tlz, V) riz, jy, v)

\4

Note that r(z, vly, v) =0 for z#y, so that (3.57) becomes

t
‘rF(x,flz,'r)&"ar;LuL)dﬂr

v

The right hand side of (3.11) is

] tFex, fz, 1) ele, 7le, ) ar1 & = Y g

Interchange the order of integration in (3.59) to obtain

f
[ Fec,dz, ot [, rlg, o Tordlred g ar

\4

Now, equate (3.58) and (3.60), and since v and t are arbitrary, obtain

oz, TaiVZIV = fr(zr 1’|€ ,s) 3f(§ I;leI v) d¢

which is (3.55). Further by the definition of distribution and density functions,

r
Rz, Tly, 9= [rl, nly, v) dn

v

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

Therefore, integrate both sides of (3.61) with respect to the forward time-variable T to obtain the

backward equation for R(z, Tly, v) .
Re, Ty, 9 f o, sly, v)
P Rz, TlE, s) oy d¢

Now, for scalar systems, consider the problem of determining

atlystg) =Prob{ sup IXer)| <BIXt) =y}, -B<y<B

0

where B issome positive number. Then, for |y|< B,
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1-qltly, fo) =Prob { sup |X(r)|= B} (3.65)
fOSTSf

Define the events 61 and 82 ’

81 : the event that X(1) =B
62 : the event that X(r) = -B

and the random variables T] , T2 , and T ,
71(6]‘)' , fo) : the first time that 61 occurs, given X(to) =y
T2((£2|)’ ’ fo) : the first time that 62 occurs, given X(fo) =y

T(€'] , €2|y, fo) : the first time that both él and E2 occur, given X(fo) =y

Then
Prob { sup [X(r)|= B} = Prob {T) < t} + Prob {I, < t} = Prob T<t (3.66)
fOSTSf
and (3.66) becomes
altly, t)) = 1-R@, tly,t5) = R(-B, tly, t)) +RB,-B, tly, 1)) (3.67)
where
FB, - B, tly, to) dt = Prob ft<T<t+dt) (3.68)
and A !
RGB, -8B, tly, t;) = { FB,-B, Tly, t))dr (3.69)
0

Now, the first three terms on the right-hand side of (3.67) satisfy the backward equation.
We will show that F((B , -8B, tly, fo) also satisfies the backward equation; consequently,
qtly., fo) is a linear combination of solutions and thus satisfies the same backward equation.
Divide the time interval [to, t] into n sub-intervals Ty < t < Ty 417 1=0,1,..., n=1,
where T, = to and T =t Let hotyr e een b correspond to points inside these sub-intervals.

0
Then
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Prob {t < T < t +dt} = Prob (f<T2< f+dt§‘é] occurs at t]) « Prob (ro< T'<'r]|y, to)+. .

+ Prob (t < T,<t +dflEI occurs at tn) * Prob (Tn_.' <T < fnly, to)

+ Prob (t < T] <t +dt|§ occurs at fl) + Prob (-ro < T2< ‘rlly, fo)
+...Prob (t < TI <t +df|82 occurs at t2) * Prob (Tn-l < T2< Tnly, '0)

Now, writing AL=71,-TL -y and taking the limitas n— « and At—'(), we have

t
?(BI_BI f|)’l 'o)= f r(_B ’ leI T) r(BI le: tO) dr
t

0
' (3.70)
+ f r@,t|~B, 7)r(-B, 7|y, to) dr
t
0
Now, we obtain directly from (3.70),
aF(BI-BIt|Y’ fo) t ar(B, T‘Y: f0)
afo = .[r('B,f|B, T)_aT‘;——-dT-r(-B't‘B'tO)r(B' to‘)'l b)
0 (3.71)
t (-8B, Tly, tg)
+ _[r(s,fl-a,r) s dr -, t| =B, t) r(-B, ly, ¢
0
Note that r(B, toiy, to)=0 for y#B and (-8B, foly, fo)=0 for y #~8, so that (3.71)
becomes
a@®,~B, tly, t) t @, Ty, ty) t a(-B,ly,t)
o - fr(-B,le,T)—————o—d1’+ fr(B,tl-B,‘r)——'g—d‘r
aro ot ot
t 0 t 0
3.72)
Now, since r(B, 7|y, to) and r(-B,7ly, to) satisfy the backward equation, (3.72) may be
written
ar(B, -8, tly, t.) ¢ :
=[-8, rle,f)(fr(s,ﬂe,s) Sl sy, ) de)df
0 t
2 3.73)
+ f r@, t| -8B, T)(ﬁ(-B, 1lE , s) Q;(E-’—;lvudg)d'r
t
0
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Interchanging the order of integration and using (3.69), we obtain finally

RB, -B,t|y,t)
P o =IR(B,-B,f|e.s)§P-(§'—sal{—'—Vldg (3.74)
0

Thus §(B, -B, tly, fo) satisfies the backward equation and q(tly, to) does also.

A general proof that q(t|y) of (3.49) satisfies the backward equation for vector random
processes is given in Dynkin [4]. (Since qft|y) can be interpreted as the expectation of a

functional such as OB, I X@)|| on the output Markov process {X(t)} , the fact that q
<s<

satisfies the backward equation is plausible if the result for expectations of functions of Markov

processes holds also for functionals.)
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4. RANDOMLY-EXCITED DYNAMIC SYSTEMS

4.1 Stochastic Differential Equations

The first problem that arises in the study of randomly-excited dynamic systems is charac-
terization. Consider a system which, when subjected to a deterministic input £ (t), can be

represented by the system of ordinary differential equations

x=fx, £, 1) @4.1)

where x is the state of the system. When the excitation £ (t) is not deterministic, but is a
sample function of a stochastic process {¢ ()} then the state x(t) for t= t which evolves
according to (4. 1) from a known initial state X0 will depend on the particular sample function
applied. Therefore x can be considered as a sample function of a stochastic process {x(t)} .
A suitable description of a randomly excited dynamic system syould enable one to determine the
characteristics of the output stochastic process {x(t)} given the characteristics of the input
process {£ (1)} .

Certain difficulties of rigor can arise, however, when the very general system (4.1) is
considered. This is due to the fact that for some random excitation processes {£ (t)} suchas
Gaussian white noise (a process characterized by the properties E{£}=0 and
E{E(t)E' (1)} =60t - 1) = where T isa non=singular matrix) the derivative in (4.1) is not
well-defined.

Because of these difficulties, most investigations have been concerned with the "additive"

system

x=glx, 1) +Glx, 1) & 4.2)

where {£1} is a white noise process. (It is shown below that one can interpret a Wiener pro-
cess as being generated by integrating the sample functions of a stationary white noise process.)

To make (4.2) meaningful, 1t [ 17] replaced (4.2) by the stochastic differential equation

dx = g(x, 1) dt + Glx, t) dw 4.3)
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where dw is a sample function of a Wiener process. Eq. (4.3) in turn is defined to be equiva-

lent to the integral equation

t t
x() =xttg) + [ ok(r), 1) dr+ [ Glx(r), 1) dw (1) 4.4)
t t
0 0
where the second, "stochastic”, integral is defined in a special way, namely

t
[ Gx(r), ) dw (1) = Li.m. E G(x(fk), fk)[w(tk_H) -w(fk)] (4.5)

fo

as n]?x [ka - tk] - 0. In this way, a rigorous, self-consistent theory of stochastic, differential
equations has been established. However, Wong and Zakai [18] have shown that if the dw pro-
cess is replaced by a sequence of well=behaved processes Y, s° that (4.3) has the solution x in
the sense of ordinary differential equations and if y, converges to w as n— @ then x does
not converge to the solution of (4.4) when [to's definition (4.5) of the second (stochastic) integral
is used. Since this limiting approach corresponds to the act/uul experimental treatment of physical
systems, this inconsistency between the physical and rigorous mathematical treatment is unfortunate.

Gersch [19] has also pointed out that this same problem exists for deterministic systems with
delta<function parameter variations. Of course, delta~functions and white noise are mathematical
idealizations and cannot occur in actual physical systems.

To avoid the inconsistency, Stratonovich has given an alternate definition of the stochastic
integral in (4.4) which can also be used to establish a rigorous mathematical theory and which seems
to be consistent with physical experiments. (See Wonham [20].) According to Stratonovich, the

stochastic integral in (4.4) is to be interpreted as

t x{t ) )
[ G&r), 1) dw () = Li.m. [E<;<—_"—“-2—"— , 9] (Wi, ) -wit)]  @.8)

fo

as rrfx [tk+1 - rk] - 0. We note that when G does not depend on x there is no difference
between Ito's and Stratonovich's definitions so no difficulty arises in using the form (4.2) fo

describe the system.
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For simplicity in the sequel, we consider only the system
x =g(x) + GE 4.7)

where G is a constant matrix. Equation (4.7) has the form of the Langevin equation [3] which

has been extensively studied by physicists in connection with Brownian motion.

4.2 Integrator Excited by White Noise

Consider the simplest case of (4.7): x isascalar, g=0, G=1, and £ is white noise,
which has the properties E(¢ (t)) =0, E¢€ ®) E(T)) = 02 6(t - 7). Formmal integration of (4.7)

results in
t
x(t) =y + oj £@) dr x(©) =y

Hence
Ex®y) =y
and

t
I026(T -'n)d'rd17=y2+02f

t
EWly) =y2+ |
00

The variance of x2(t) given y thus is czt . The Gaussion variable having a mean y and a
variance 02f characterizes the Wiener process described earlier. Hence a Wiener process may
be regarded as the output of an integrator, starting in the state y and excited by white noise with
a correlation function 026(f - T) . More generally, if a vector white noise process £ (E(£) =0,
EE@M) £ () =Z 64 - 1) where L is the "covariance matrix") is integrated, so that x = £ with
Xq =Y it is found that E(x(t)) =y, Var [x{t) x’{)|yl =Zt and
= n ‘% ’ -1

P, t|y) = ((27) det Zt) ® exp (-2 (x = y)' (1) (x -y) (4.8)

where n is the dimension of the vectors x and y . Hence the output process x can be re-

gorded as a multidimensional Wiener process.

4.3 Additive System Excited by White Noise
Now suppose that white noise is the input ¢ to the system (4.7) which starts in the state

Xg=Y - We can write
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dx =gx)dt +Gdw , x,=z (4.9)

where dw/dt = £ , i.e., dw is a Wiener process having the density function (4.8) with y =0 .
Then
E{dxlxo =z} =g(z) dt + GE{dw}

and since E{dw} =0 for a Wiener process, we obtain the vector h(z) of (3.34) as
h(z) = g(z) (4.10)
Similarly

El(b) ()’ [y =2} =g(e) o’ (@)@’ + GE{(dw)(aw)'} G

and hence the matrix H(z) of (3.35) is
HE)= GG’ = D= [D, ] @.11)

since E{(dw)(dw)’} = Z dt for the Wiener process dw .
It turns out that the analogs of the n, for 1> 2 vanish in this case. However, since

tensors are involved we shall demonstrate this for a scalar process. We have
E((@)" |y = 2) = Elgle) d + o))
= E{(ew)") +kgz) Ew)'} dit + o (d)

Now, the Wiener process, with the density function (4.8), E{fdw)}=1-3° ... * k - 1)(dt)/2
for r even and is zero for r odd; hence, for k < 2, E{(dw)k} = o (dt) and E{(dw)k-l} dt = o (dt) .
Thus 'nk(z) =0 for k > 2. Asimilar calculation reveals that the multidimensional analogs of
nk(z) vanish for k> 2.

Upon substitution of (4. 10) and (4. 11) into the general form of the forward equation (3.32)

we obtain
2
aplx, tly) _ ] 1 3
‘La,lL— %3 E‘ fg, ) plx Hyl + 3 5‘/ W (D, ;px, tlyl  4.12)

If gx)=Ax , then the solution to (4.12) is found to be

1 -1
plx, tly) =  exp[-#(x - p)’'M (x - )] (4.13)
202 (et MIE
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where

p=Ap, p(0)=y (4.14)

M=AM + MA’+ GZG’ M(0) =0 (4.15)

Direct substitution of (4.13) into (4.12) verifies that this is the solution. It is thus noted that the
transition probability density function of the state of a linear system perturbed by Gaussion white
noise is also Gaussian with a mean u(t) which satisfies the unexcited differential equation of the

process, and with a covariance matrix governed by the variance equation (4.15). The backward

equation corresponding to (4.12), upon use of 3.33), is given by

826 (t]y)

dultly) _ AT(tly) 44 . -
= D = 4.16
=t Z,90 3, 23I0,, %5 5y; D=GLG (4.16)
or, more simply

du (t ' - -

281D~ gy) v, ity +3 9, - OV 51T (4.1

In particular, the conditional characteristic function is an expectation, i.e.,

Cw, ty) =Efed X|yl= [ eIV "pix, tly) dx (4.18)

and must be a solution to (4.17). The characteristic function corresponding to (4.13) is well-known

as

Cw, tly) =exp [-% v'Mv +jv ] (4.19)

and consequently (4.19) is a solution to (4.17). Direct substitution of (4.19) into (4.17) verifies
the fact.
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4.4 First-Order System Excited by a Markov Process

Consider the first order dynamical system

dx = g(x) dt +dg (4.20)
where d§ is now a sample function of a Markov process with conditional moments Ky “tlz)

given by (3. 16). When (4.20) is integrated over a small interval At we have

Ax =g(x) At +A¢ (4.21)
Therefore, the moments of the output are given by
A a0 = 0" = Elgk) At + Ag) (4.22)
- £ (Dewan’u,_ @, s .29
k=0 \k 9 Hi-k ! :
So that arlz)
A, @ e k M- Bz
nt(z) = AI;TO xr " AI;TO kEO(k)[g(X) At] B (4.24)
and

fi12) = () wy 0l2) +1,(2)

(4.25)
= g(x) + Tl](Z)
ﬂ?', (2) = ni(z) iz 2. (4.26)
Therefore, the general expression of the forward equation (3.20) becomes
i
o (2 . , t
e, tly) __ Blgbd pe, il , 3 1 Tmd ket .27
' — - .
ot ox =1 ¢! e

Note that the first term on the right-hand side of (4.12) and (4.27) is a drift term which represents
the effect of the system dynamics on the input process.

We have found in Section 3 that if d¢ is a (4.7) Poisson step process, i.e., diAdt isa
Poisson impulse process, ni(x) = )\mt independent of x for = 2, where the m, represents

the moments of the amplitude distribution. Thus, (4.27) becomes

« m k
aplx 'arfm __ dlgk) Pa(::, ol , kEI (- 1f (kl)<! 3 P(;‘XL*JY) (4.28)
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Equation (4.28) is the forward equation for the probability density of the output of the first order

system perturbed by Poisson impulse process.
Note that because of the presence of terms 1) 3 (x) for i> 2, the Poisson impulse process

is more difficult to generalize to n-dimensions than is the Wiener process. This is one reason that

the Wiener process has found widespread use in applications.
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5. STABILITY AND LIFETIME

5.1 Definitions of Stability

It will be recalled that an equilibrium state of deterministic dynamic system is said to be
stable if for any arbitrary neighborhood of the equilibrium state it is possible to find another
neighborhood such that if the system starts out in the second neighborhood it always remains within
the first. This concept of stability can be stated in probabilistic terms even though the system is
deterministic. Suppose that x(t) is the state of the system at time t and that the origin is the
equilibirum state. We can say that the origin is stable if and only if for every neighborhood N
of the origin there exists a neighborhood M of the origin such that

qly) = Prob [X() € N for all s> 0|XQ)=y] =1
forany y in M . A stability definition of this type, which may be termed stability with proba-

bility one or almost sure stability, can be applied directly to randomly-excited systems.

If we let {|X|| denote the norm of the vector X, we have the following formal definitions

of almost sure stability {asymptotic stability):

Definition 1 = AS. The origin is stable with probability one (w.p. 1) if and only if toany ¢ > 0

there corresponds a &6(¢) such that if “X(to) l< 6, then

Prob (sup IXW>e)=1.
f>ro

Definition 2 = AS. The origin is asymptotically stable with probability one if it is stable w.p. 1

and if forany y > 0 there exists a time ru such that
Prob (up XMl <) =1.
>t

The definitions of stability with probability one are very strong, since they entail, in essence,
the examination of every member of the output ensemble {X(t)} . Kushner [7] considered a slightly

weaker definition of stochastic stability, namely
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Definition 1 - AS’. The origin is stable with probability one (w.p. 1'* if and only if to any
0 <p<l1, € >0, there correspondsa O(0, €) such that if ||X(to)” < 6, then

Prob(sup [IX(Hl > €)<p

>
ffo

in essence, this definition allows for the possibility that a subset of nonzero probability of the
ensemble, {X(f)} will not have “X(f)“ < € forall t >t , butthat the probability that
I X(Hl > € can be made as small as desired by proper choice of I X(to)“ .

An alternative class of definitions entails examination of ensemble averages only:

Definition 1 - M. The origin is stable in kth moment (i.m.k.) if andonly if toany € >0
there corresponds a 8(€) such that if I X(to)“ <96

sup E("X('r)“ k) < fk.
>t

Definition 2 - M. The origin is asymptotically stable in kth moment if and only if it is stable

i.m.k, ond if forany p >0 there exists a time t” such that

sup E XI9 < k.
f>f“

Since stability (asymptotic stability) with probability one implies a particular property for almost
every member X(t) of the output ensemble, while stability in moment implies a property of the

ensemble average, one type of stability does not imply the other.
A third class of definitions is stability (asymptotic stability) in probability:

Definition 1 ~ P, The origin of the system is stable in probability (i.p.) if and only if for
only €>0 and 0 < p< 1, there existsa 0(€, P) such that if | X(to)" < 8 then

sup Prob @I X(1ll >€) <p.
f>f0
* This concept is called "stability in probability" by Khas'minskii. W.M., Wonham has suggested that
to avoid the confusion between definitions 1 = AS” and 1 - P the former be called "strongly stable in
probability” and the latter "weakly stable in probability.” It might be pointed out that the definitions
of stochastic stability have not as yet been crystallized.
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Definition 2 - P. The origin of the system is asymptotically stable in probability, if and only if it

is stable i.p. and if forany >0, 0 < p <1, there existsa f“ such that

sup Prob Ax@l >w) <e.
f>|'u

Asymptotic stability in probability is weaker than either asymptotic stability with probability one or
asymptotic stability in moment, since either implies the first, but neither is implied thereby. The
significance of the interchange of Prob and sup from definition 1-AS and 2-AS to 1-P ond 2-P is
that it is possible for every member of the ensemble {X(t)} to violate the condition sup I X(r)|| <e€
at a different time, yet at any fixed time instant only a denomerable subset violates the condition

and thus s?p Prob (" X(f)" >e€) =0,

For visualization, suppose the output "ensemble" comprises 1000 functions XL(t) such that,
at any given time, at most one of them has magnitude |X(t)| > € and each of the functions X_L(f), =1,
oes, 1000, violates the condition sup IX()| < € at some time t. Thus Prob (suplX(t)I >€) =1
yet at any fixed time Prob (| X(t)l >re) < 1/1000 and hence sup Prob ( X (1) > = 1/1000. As
the number of members of the ensemble increases without bound we will have stability in probability

but not stability with probability one.

The preceding conditions were for local asymptotic stability and need hold only for initial
states in some closed region containing the origin. The origin of a system is called asymptotically

stable in the large or globally asymptotically stable in any of the preceding senses if it is asympto-

tically stable for every finite X(fo) .

5.2 Methods for Determining Lifetime

By use of a stochastic version of Lyapunov's second method Kushner [7] and Khas'minskii [8]
have obtained sufficient conditions for stability with probability one for a class of randomly-excited
systems. These conditions, however, can be satisfied only by those systems for which the effect of
the excitation vanishes as the state approaches the origin. Unfortunately, this rules out many sys-
tems of practical interest. This limitation arises because for systems excited by white noise the
confinement probability (3.49) tends to zeroas t—+ , for any finite N and any y , when the
effect of the excitation does not vanish as the state approaches the origin. This can be demonstra-

ted for system (4.2) as follows:
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Assume that system (4.2) is excited by white noise with a normalized covariance matrix of unity, then
q(f y) satisfies (4.12),

ag(ﬂt)’) = '[y [q(|.| . (5.1)

The boundary condition for (5.1) is
i y) =0 for t2 0, y€dN (5.2)

where 3N denotes the boundary of N, since, if the initial state is on or outside the boundary

of the region the probability of remaining inside the region is obviously zero. The initial condition
for (5.1) is

q(0 y) = 1 for yeN (5.3)

since, if the initial state is inside the region, the probability of going to a state outside the region

in no time at all (t = 0) is zero.
Now suppose that q(t|y) approaches a steady-state limiting function qly) as t = . Then,

since qly) is independent of t, it must satisfy

Ld=9:9q+1/27-Dvg=0 (5.4)

subject to the same boundary condition (5.2). It is not too difficult to show that q(y) = O is the
only solution to (5.4) which satisfies the boundary condition (5.2). First note that (5.4) can be

expressed as

-[y lay)1=oly) - v qly) + 1/2trace (DI(y)] =0 (5.5)

where J(y) is the Jacobian matrix of v g(y). We note that if q achieves a maximum at any point
Yo then v -q(yo) = 0 and J(yo) is negative semi-definite. Since D is positive semi~definite,
the trace DJ(yO) < 0. Hence ’Cy [q(yo) 1 <0. This result is called the principal of the

maximum [21] which can be used to show that u(y) =0 is the only solution of

-[y Culy)T = cly) uly) (5.6)
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for any c(y) >0 throughout a region R and any u(y) which satisfies the boundary condition
uly) = O on the boundary of R. If u reaches a positive maximum at a point Yo in R, then from
(5.6), Jy [u(yo)] = c(yo) u(yo) > 0, which contradicts the principle of the maximum. Similarly
if u(yo) has a negative minimum (i.e., - u(yo) has a positive maximum) at Yo then

,[_y [ -u(yo)] = -c(yo) u(yo) > 0, which again is a contradiction. Since uly) = 0 on the
boundary and can have neither a positive maximum nor a negative minimum inside R, then u(y) must

be identically zero throughout R. To apply this result to g(y), let
-0 yk
]

q() =uly) K - e (5.7)

where Yi is the kth component of y and u(y) = 0 for y on the boundary of R. Substitution

of this expression into (5.5) leads to

JY (ul=gly) *v v + 1/2 trace [DJU(y)] = ¢(y) uly) (5.8)
where J(y) is the Jacobian matrix of v u(y) with respect to y and

cly) = 00 ——r (5.9)

ow, if G is not the null matrix, then dkk >0

e
1

where dkk is the kth diagonal element of D.
for at least one value of k. Forsucha k, itisalways possible to choose K and @ such that

cly) > O throughout R. [For example, take @ >;2an 9 (y)/dkk and K >exp [’;‘gﬁl Yk| ). ]

Hence, by the previous result, u(y) = O is the only solution to (5.8) which satisfies the boundary
condition u(y) = 0 on the boundary of R, and thus gly) = O is the only solution to (5.4) which
is zero on the boundary ON. This means that the state ultimately escapes from any finite region of
-the origin, even if it starts at the origin itself! The natural distinction between a stable and an
unstable system which can be made in the deterministic case is thus not as clear in the stochastic

case,

The fact that D is a constant matrix, and hence that dkk > 0 (for some k) is needed for the
construction of c(y) of (5.8). This demonstration is not valid when D may depend on y, and for
appropriate dependence of D on y, (5.4) may have a nonzero solution which satisfies the

boundary conditions. Although in Section 4 only the case in which D is constant was treated,
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it can be shown [20] that the backward equation (4.12) remains valid when D depends on y
provided that .[Y is defined by

u=f-vu+12v GGV ul 5.10
Iy s /! y y (5.10)
where
N }?} adi for Ito's stochastic
9 e W integral (4.5q)
1
f=
n 3G Jj for Stratonovich's
g+ I —3—— G, ; stochastic integral
1=1 Yz, Z z )' kJ (4.5b)

where d; is the 3t column of D. Thus in situations in which G depends on y it is possible
to obtain a nontrivial asymptotic solution to (5.1) and hence it may be possible that g(y) >0 and,
in fact, this probability may arbitrarily close to unity when G(y) = 0 with y. (Kushner [7] has

considered this situation in some detail.)

In systems with G = const it is of practical interest to determine how fast the confinement

probability q(t|y) approaches zeroas t~ . In particular, one can define the half-life t of the

h
process by
q(fh’ 0) = 1/2 (5.11)

which is the time it takes for the confinement probability of the process (which starts at the origin) to
diminish to 1/2. The relative stability of systems can be compared by comparing the respective

half-lives.

Another measure of system stability is the average first passage time to the boundary of a set.

Evidently
q(fl y) = 1 = Prob [X(s) ¢ N for some s ¢ [0,t]1]X(0) =

Let the random variable T(y) denote the first passage time to the boundary starting at the state y.
Let the corresponding density and distribution functions be, respectively, r(y) and R(Hy). (These are

assumed to be independent of the starting time.)
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Then

gily) =1 - Ry

and the Laplace transform of (5.12) yields

Jey) =1/ - Ry

where ~ indicates the Laplace transform. The average first passage time, defined as

t

T(y) I|m ] Tritly) d ||m s ,,({ f e (r y)dr }

0

can be obtained from (s y) as follows:

t
since «Z{{ Tr(r|y) dr) =ls L {re@rly)} = - sl

we see that

= d .
T(y) = ls'—% - I iyl

(5.12)

(5.13)

(5.14)

(5.15)

The average first passage time 'I-'(_y) can be related to the confinement probability qf{t|y) .

Since R(t] y) = Prob { T(y) <t}
we have

gily) =1 - Rtly)

Taking the Laplace transform of (5.17) and using the fact that ¥(sly) = sﬁ(sl y) in (5.15)

gives

T(y) = Ilm [sq(sl y) ]

Hence, since ql=|y) =0,

t Loed

- . d

T(y) = - m Tgﬂ,f—d7= fq(ﬂy)d'r
0 0

relates the mean~passage-time-to-the~boundary to q.

(5.16)

(5.17)
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The average first passage time may also be calculated as the solution to a partial differen-

tial equation. Write the Laplace transform

r 52f2
T@ly) = f[l-sf+ 51 -.-.]r(ﬂy)dt
0

Then the Laplace transform of 3r (t|y)/3t is

j:[ 2, o Te(tly)
¢ sostd =y - r(tiy) dt

Now take the Laplace transform of (5.2) and equate the coefficients of si‘. Let f(n)(y) denote the
nth moment of T(y). Then we have

a2 9 - T66r 9 1014 g - v 10 (5.20)

Therefore, the average lifetime can be calculated as the solution to (5.20) with n = 1, i.e.

with TV = 7,

-1=1/2 v, N eley vyT]+ aly) - vyT . (5.21)

with the boundary condition T(y) = O for y on the boundary of N.
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6. ESTIMATES OF STABILITY

6.1 Analytical Methods

Exact determination of system lifetime necessitates solving (5.1) subject to (5.2) and (5.3).
In most practical problems an exact solution to the partial differential equation cannot be obtained.
Moreover, the parameters of the actual disturbances are usually not known with the precision that an
exact solution warrants.

Thus there is a need for methods of obtaining lifetime estimates which do not entail solving the
exact problem.
Upper Bounds - Upper bounds are useful to eliminate unsatisfactory system designs: if a particular
choice of system parameters leads to an upper bound on q which does not satisfy the design require-
ments, then certainly the exact solution for q will also fail to do so.

An upper bound which is easy to calculate in many problems is
d(t|y) =Prob [X(t) e N|X(0)=y ] (6.1)

Clearly, q(t]y) < §(t|ly) because the set of sample functions for which X(t) € N at time t contains
the set of functions for which X(s)e N forall se{ 0, t]. (The first set contains more functions since

it includes those functions which are not in N at earlier times s <t .) Note that

q(tly) = [ plx, tly) dx (6.2)
N
where p(x , t|y) is the conditional probability density function.

For a linear system p(x , t]y) is the normal density function given by (4.8). The evaluation
of (6.3) can usually be accomplished by appropriate changes of variable and use of a table of error
functions. (If necessary, the region N can be inscribed in a larger region which makes the limits of

integration on (6.2) more convenient.)
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A similar device can be used to obtain another upper bound on qt|y) . If we can find a solution
qR(t ly) to(5.1) subject to conditions (5.2) and (5.3) on a region R containing the given region
N, then qR(t ly) is also an upper bound on q(t|y). Thus we attempt to solve the backward equation

subject to more convenient boundary conditions.

Lower Bounds -~ While an upper bound on q serves to weed out unsatisfactory designs, it cannot be
used as an estimate of actual system performance; for this purpose , lower bounds are required. Two

general methods have been described in the literature. One technique is based on a theorem due
to Wonham [10]:

Let V(y) be a twice continuously differentiable function such that

VMy) =1 ye aN (6.3)

and

O<Vy) <1 , ye N

If there exists a constant o > 0 such that

LMY o -V , yeN (6.4)

then

qth) = -Vl e, 1= 0 (6.5)

where of is the backward operator defined in (3.28)*.

The problem of obtaining a lower bound can be reduced to finding the principal eigenvalue
and eigenfunction of the boundary-value problem (6.3), (6.4). When L+a is "self-adjoint" then
an upper bound on the principal eigenvalue oy, can be obtained by Dirichlet's principle [21] .

A second technique due to Kushner [9] is based on the concept of a stochastic Lyapunov function
[7] and on theorems of Doob [ 12] and Dynkin [4]. A lower bound on q can be obtained using the
following corollary to a more general theorem established in Reference [9] :

*The subscript y on & is omitted when d[operotes on a function of only a single space variable.
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Let V(y) be a continuous non-negative function, which is bounded and has continuous and

bounded second derivatives in the set Q = {y: V(y) <1}. For system (4.9) (where g(y) satisfies
a uniform Lipschitz condition in Q and is bounded by K(1+ ||y || 2)]/2) if there is a non-

negative, integrable function ¢ (s) on the interval 0<s <t < »  such that

LIV )] sols) forall y € Q (6.6)
then
Prob {sup VXXE) < 1] X(0) =y} = 1-Vly)-&(t) (6.7
O<s<t
t
where &) = J ¢ (s) ds (6.8)
0

and o(, is the backward operator defined in (3.28).

If W(y) isselected such that Q isa subset of N , then q(t|y) is greater than or equal
to the left-hand side of (6.7). Thus the right~hand side of (6.7) gives a lower bound to q . The
major difficulty with this approach is that in cases for which the right-hand side of (6.7) becomes
less than zero after some finite time t' (6.7) gives an unduly pessimistic lower bound. However,
as in the case of deterministic systems, a better choice of V(y) and ¢(s) may lead to a better
estimate. The bound (6.5) does not have this shortcoming since, for finite time, the right-hand side

of (6.5) will always be greater than zero.

A third approach for obtaining a lower bound on q(t|y) is similar to one described for
upper bounds. If a solution qR(t by) can be found to (5.1) subject to (5.2) and (5.3) on a region
R contained in N over the time interval [0 ,t], then qR('r ly) , the probability of remaining
in the smaller region R , is certainly a lower bound on the confinement probability q(t|y). Note
that since the transition density p(x, t|y) and the conditional characteristic function C(v, tly)
are known to satisfy the backward equation. These are useful candidate functions in applying this

technique as well as the corresponding one for upper bounds.
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Another approach, that can be used for obtaining a lower bound on q(t|0), makes direct
use of an inequality to Dynkin [4]:
qtloy =1 - = (6.9)
T(0)
where T (y) is found by solving (5.21). In problems for which (5.21) is easier to solve than (5.1),
the bound (6.9) will be more easily obtained than the exact solution to the problem. Since the
right-hand side of (6.9) becomes zero when t =T(0) , (6.9 ) may give an unduly pessimistic

lower bound for q.

6.2 Numerical Methods

Monte~Carlo simulation is a "brute-force" method of obtaining an approximate solution

for q(tly). In this approach the equation (4.4) is replaced by the difference equation

=x + +
a1~ %n 9(xn) Yn

(6.10)
where
(n+)At
olx )= [ gt at (6.11)
nAt
(n+1) At
v, =f G dw (6.12)
nAt

Random vectors v, are generated statistically and applied to (6.10). An ensemble of trajectories

is computed and the ratio

Number of trajectories for which x_ €N, starting with Xg =Y
n
rinAt|y) =

Total number of trajectories

is used as an approximation to q(nAtiy) .




Another numerical technique which may be used in obtaining solutions to (5.1) is

Galerkin's method . Briefly, for a scalar process we assume a solution in the form

-]

altly) = = f (ya (1) (6.13)

n=

where fn(y) are appropriately chosen orthogonal functions satisfying the boundary conditions.

Upon substituting (6.13) into (5.1) we obtain an infinite number of ordinary differential equations
for the qn(t) 's subject to the given initial condition. The numerical technique consists of truncating
the infinite set of equations after N terms, and then integrating the resulting Nth order system

by standard numerical techniques. The circumstances under which the solution to the Nth order
system is a valid approximation to the infinite order system is discussed in Reference {22] and

in other references concerning Galerkin's method.
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7. EXAMPLES

7.1 Integrator with White Noise Input (Wiener Process)

Consider the first-order system
x=t 7.1)

where £ is white noise with variance 025(f) . In Section 4 we demonstrated that the output
process {x} is a Wiener process and thus the confinement probability satisfies the diffusion

equation (3.31).

2 2
‘ H_o 39 (7.2)
| at 2 2
dy
with boundary conditions
qt}+ B) =0 for all t (7.3)
and initial condition
L lyl<8
q(t|0) = 7.4
0 |yl=8

Take the Laplace transform of (7.2) and apply initial condition (7.4) to obtain
2 2
941 -q=-1 7.5)

dy2

where §=G(s|y) is the Laplace transform of q(t|y) . A particular solution to (7.5) is clearly
§=1/s. Two linearly independent solutions to the homogeneous form of (7.5) are cash (y /256
and sinh (y/Zs6) . Thus

q6ly) = % +A] cosh(-oZ ﬂa+ A2 sinh(-aL f?;) (7.6)




where A] and A2 are constants to be determined from boundary conditions (7.3). Substitution

of (7.6) into (7.3) yields
cosh L /7%
g6y = ls ("*‘“‘%‘“) 7.7)
cosh r /25

The well-known inverse Laplace transform of (7.7) is

k

< ® - 2 2
q(t‘y) =% kEO %—-] exp[- (2k+8]g’*'"20 ! ]cos[(2k+ l)g %] (7.8)

and is plotted in Figure 7-1 (adapted from Chart 2 of [23]).

An alternate form of q(t]y) can be obtained by first expanding (7.7) in the infinite series

1) B +y]}

q(Sly) = -{] —kEO ("l)k [exp ("'LZ-‘S' 2k + 1) B - y]+[exp

Then, taking the inverse transform term by term gives

q(ﬂy)=1-§ (_‘)k ; [(2k+])B—y]+ e ['(2k+1)B+y’| 7.9
k=0 {erchm ] G/TJ} )

which can be interpreted as
x k
qltly) =1 - 2k§0 (-1) [1 - Prob 1 X <(2k + NBIX(O) = y}J (7.10)

By using definition (5.17) and §(|0) from (7.7) we find that the average first passage time to
the boundary given the initial state y =0 s

T = -gj— 7.11)

Thus, as one intuitively expects, the average first passage time to the boundary increases with the

size of the region and decreases with the magnitude 0° of the disturbance.
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The upper bound (6.2) on the confinement probability is given by
B
§t0) = | plx, t]0) dx (7.12)
-B

where, as determined in (2. 10),

plx, t{0) = _,/'QT]? exp |- x2/202t]

not

The upper bound (7.12) is given by

4(0) = erf [B 202*?] (7.13)
Wonham's lower bound (6.5) is obtained by choosing V{y) = 1 - cos (—g—Bx) . Thus
2 2
oa=2 172 satisfies (6.4) with equality and (6.5) becomes
8B
a(t10) = exp [- 720 2/887) (7.14)

A lower bound using Kushner's method may be obtained by selecting
2
Vi) =y*/82 (7.15)

hen

LV =o2/s?
where o[ is the right-hand side of (4.17). Thus
o) =o?/82
and (6.7) yields the estimate
q(t{0) > 1 - (ozt/Bz) (7.16)

Although another choice of V-function might yield a better bound than (7. 16), the choice
(7. 15) suffices to illust-ate the method.
Another lower bound on q(t|0) can be obtained as follows: Let P, (t) = §(t|0) and let

pH=1-p .
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Then by using only the first term in the bracket of (7.10) and the fact that
Prob {I X <B} <Prob{IX] <38} <pProb {IX <5B}<...,

we have

q(tl 0) > - 1 + 2 Prob {| X| < B}

q(tl 0) > Prob {I x| <B} - Prob {| x| >B} = p, - Po 7.17)
Note that p; - Pg s also a lower bound for q(tl y) forany |yl <B.
Dynkin’s lower bound (6.9) can be obtained by using (7. 11) to give
q(t}0) > 1 -—;’-;- (7.18)

which coincidentally is identical with (7.16)

A Monte~Carlo simulation in accordance with the method described above was also performed.
Figure 7-2 contains graphs of the exact solution (7.8), estimates (7.13), (7.14), and (7.16), and
the Monte-Carlo simulation as function of normalized time. From the figure we see that: (a) the
estimate (7.16) becomes zero for finite time and thus is not as useful as (7.14), (b) the Monte-Carlo
simulation agrees well with the exact solution, (c) the upper bound (7.13) becomes a rather poor
estimate as time increases. The lower bound p, - Po is not shown in Figure 2 since for the scale
used in the Figure p; - Po is almost identical with the exact solution. The p; - Po technique

will be discussed further in Section 9.
From Figure 7-2 it is seen that the half-life is given by

= 0.758%/0° , (7.19)
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7.2 Integrator with Poisson Impulse Input (Poisson Step Process)

Consider the system (7.1) where £ is a Poisson impulse process. From (3.41) the confinement

probability satisfies

©

g_?. ==2A [q - I q(t| y - 2) ‘y](z) dz] (7.20)

where A is the average number input impulses per unit time and 71(6) is the density function for
the magnitude of each step. The boundary conditions and initial condition on (7.20) are given by
(7.3) and (7.4).

A solution to (7.20) shall be constructed by assuming that the solution is separable and can be
expanded in ferms of orthogonal functions {*Pk(y) }, i.e.,

qtly) = T 4040 7.21)
where !l)k(B) = lbk(-B) =0

520 ¥, () =1

B

[ v ey =s,
-B

Then substituting (7.27) into (7.20) gives

B 080 = AT 0 + X [ B8O bl -2y () oz 7.22)

Multiplying by Ibn(y) and integrating with respect to y between -B and B results in

. +B @
$ () = A () + A _jl; b () _fm Z 90 by - 2y (@) dz dy
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Formal interchanging limits and summation gives

@ B
& () =28 () + X DO _!: y,2) { ® () ¥, (y - 2) dy dz

If we use the following set of orthogonal functions

;pk(y)=._‘cos [k-07 y ]
/B

28
then
@ B
: Y X 1 ) (2n - 1) 2k - )7 _
‘I>n(t) = )\@n(t) + A E‘I’k _:[,yl(g)-B_ j cos [T y 1 cos [_—TB_ (y - 2)1dy dz
-B (7.23)
Let
B
1 2m - 1 2k - )7
ykn =3 _{ cos [(_";B_.l. ylcos [-(——28—)— (y - z)l dy
B
1 -1 2n - 1) my 2k - 1) my
=Fc°s(_—_2k28) -“,;cos (nZB)" cos( 2B)ﬂdy
B
+% sin (2k ;Bl) Tz -g cos (2m -2Bl) ™ gn (2k -281) Ty dy
Then

0 k#n
Ykn T {1 @n -7
B cos(——-———ZB 9 k=n

and the differential equation (7.23) reduces to

() =-r0 @) +re L o[ v, @ cos(ﬁ’,‘ir'—‘-)—"- Jdz =12 ...
- (7.24)

For any even density function the integral is equivalent fo the moment generating function. In

the case in which % (z) is Gaussian

) -22/2&2

278

%2 =
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then

o2}

1 2 snna (2m - N7 _ 1 r2m - 1) 170 2
/ﬁ&]e-z /20 cos—zB——zdz-—exp (--Z_[T’ )

-0

and the differential equation (7.24) becomes

é (1) = A& [l-lexP(-_[M]s)J n=1,2 ...

B 28
Since
1= @ (0) - cos DT (7.25)
kK k /B 2B

The coefficients @ (0) can be determined by multiplying (7.25) by — cos (2 ;B]) 7Y and
fB'

integrating with respecf to y between -B and +B,

B .
1 (2 -7y _ o nktl 4
‘1>k(0) =3 f cos 5 dy = (- 1) T
-B
The solution to the differential equation is then
k+1 4 -
Qn(f)=(' 1) mexp{-)\f[]-exp(- ( 78)%)]1}

It follows that the solution to (7.20) with % (£ ) Gaussian is

atly) =3 k}zl é; = Ty oo (EL) myexp (- M1 - exp (- s E a6 1))
(7.26)

If we allow X = ©, keeping AG? constant then the Poisson impulse process approaches a white

noise process. The solution approaches

k+1
) ((?.—k > Ty ©o8 (Zkzg Ly exp L- (2)

q(f|y)=%§ (Zk']) 7°02 ]

k
2

where 0%= )6 which is the result obtained in the case of a white noise input.
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The probability (7.26) for an integrator excited by Poisson impulses is compared with an inte-
grator excited by white noise in Figure 7-3. The variance of the Poisson process was adjusted so that
it had the same second moment as the corresponding white noise process, i.e., )u32 = 02 where

2, . . . .
0" is the variance of the equivalent white noise process.

Although the Poisson models are analytically less tractable than the corresponding Wiener pro-~
cess, or white noise limiting forms, it may be possible to obtain useful estimates of performance. In
particular it would appear that the use of white noise with 02 = )t&z in place of Poisson pulses yields
a conservative (i.e., pessimistic) estimate of system lifetime. In particular for a first-order diffusion

process with white noise excitation, the half-life is given by

B2 B2
fw = 0.75 —5 = 0.75 —3
AG

as A = with M° =02 = const. With Poisson pulse excitation with X = 0 we have found that

_0.69 72 6% 7t
tp—T[l-exp(-—-s—Bg—-)]

The ratio of these half-lives, is

B2

w ‘ﬂ'2 62
R - A~ = A -
fp 0.92 —2——6 L1 - exp( —F y1l=1.23 (1 -e

-

0.9/hy 27

where A= Mw = 0.7582/6% is the number of arrivals per unit of the "white noise half-life".

For A=1, (i.e., for one arrival per unit white noise half-life, which would be regarded as quite
small) (7.27) gives

t =1,32 t
P w

In other words, use of the white noise model underestimates the half-life by about 32%.

Since the white noise approximation tends to give @ conservative estimate which is not entirely
unrealistic, it would appear that the white noise approximation would be useful for A even as

low as unity,

It remains to be established whether use of the equivalent white noise model (i.e., )\62 = 02)

is similarly conservative in higher order systems.
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7.3 First=Order Linear System

Consider the system

).(=-QX+€ (7.28)

where £ is white noise with variance 0® 6(t). From (4.16), the confinement probability satisfies the

backward equation

9q _ __9q o° 97
S5 tT o ¢.29)
subject to conditions (7.3) and (7.4). Take the Laplace transform of (7.29) to obtain
02 d2~ d5
_2_ _._29- - ay Tg- —{q’:-] (7.30)
dy 4
As in example 7.1, a particular solution to (7.30) is clearly § = 1 . Introduce the transformation

‘ s
z= ay2/02 . Then the homogeneous form of (7.30) becomes

ﬁ‘_ 1 dq S o~ _
* 2 tlz-2g -5 970 7.31)
z
which has linearly independent solutions
s 1 a 2
F](S\Y)=M(§; ' g —(;Y2—') 7.32)
s 3 a ay 2
Fobly) =M, 5 ,—o%) —o%- 7.33)

where M@, b, x) is the "confluent hypergeometric function” [24]. Note that Fl is an even

function of y and F, is an odd function of y. Reasoning as in example 7.1, we conclude that

2

qily) = SL <1 MG_' z_" ?£>> (7.34)

"G

Again, following the procedure of example 7.1, the inverse Laplace transform of (7.34) gives the
required solution:
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@©

N -skt 51 1 Eﬁ
q(tyy) =kE] ¢ M(f& 15 02) (7.35)

oB

where the 5, are the poles of §(sly), i.e., the zeros of M (—E r 3 gT) o and the

coefficients G are given by:

1

d s 1 aB°
T Mo 7= L

Lo =
ks

*k
The average first passage time for the linear system is obtained from (5.18), (7.34) and by using

an infinite series for the hypergeometric functions [24] . This results in

T0) = ] %Wj) (7.36)

where (n)(]) =nn +1) ... (h + - 1). Figure 7-4 contains a graph of normalized average first
passage time vs. normalized system gain o =aB /02 which reveals that average lifetime increases

rapidly with the gain of the system.

A numerical solution to (7.29) can be obtained by Galerkin's method as follows: normalize

(7.29) by the introduction of the following normalized quantities
z =y/B
T = 0%/28°

in terms of which (7.29) becomes

L | 7.37)
where @« = 26°
o
with initial and boundary conditions
qd 2) =1 (7.38)
qirl ® )=0forall 7>0 (7.39)
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We assume a solution of (7.37) in the form

arly) =2, f NE)q(7) = F (D)g() (7.40)
where F= [f 4 eees fn' vel] (7.41)
q = [q], P W o] (7.42)

are infinite dimensional vectors. An expansion of the form (7.40)is valid if the functions fl, f2, cee

constitute a complete set,

We also assume that the functions f f2 , ++., have the following properties

RGN =F (- 1=0all k (7.43)

1
-{ fk(Y)fn(Y)dY = ckbkn (7.44)

where 6kn is the Kronecker delta, Property (7.43) insures that (7.39) is satisfied by (7.40) and the
"orthogonality condition" (7.44) permits the reduction of (7.37) to a system of infinitely many first-
order ordinary differential equations. In particular, substitution of (7.40) into (7.37) gives

of azfn
E f (z)qn(f) E (- az Tz‘ + )qn (7.45)
n=1 n=1 3z°

On multiplication of both sides of (7.45) by fk(z) and integration with respect to z between the

limits of -1 and +1 one obtains

7 ° 1 Bfn 3*F
t - _ n
9 = T r§=l £ J. fk(Z)( az 52 + - )dZan (7.46)

-1
after use of (7.44). The linear system (7.46) can be represented in the vector-matrix form
g=Cc? (- oM + Llq (7.47)

where q is the infinite-dimensional vector (7.42) and C, M, and L are infinite dimensional

matrices, with elements given by:
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Ckn = % 6kn (7.48)

1 df
Men = f zf &) g7 oz (7.49)
-1
1 £
L, = J f @) 2" dz (7.50)
dz
-1

The initial condition q(0) for (7.47) is obtained from {7.38):

q0l z) = Eofn(Z)qn(O) =1 (7.51)
n=

On multiplying (7.51) by fk(z), integrating with respect to z between -1 and +1, and using the
orthogonality condition (7.44) we obtain

1
qk(O) = —-C'L— f fk(z) dz (7.52)
-1

and then integrating the resulting Nth order system (7.47) by standard numerical techniques. The
circumstances under which the solution to the Nth order system is a valid approximation to the in-
finite order system is discussed in various references concerning Galerkin's method [22].

Integration of (7.49) by parts results in:

1 " 1 1 o 1

_ n Y _ k _
M, = f Yh gy & = YR f6) f vy 9 f f () f () dy
-1 -1 -1 -1

which upon use of (7.43) and (7.44) becomes

Mkn = _Mnk - <:ka’kn
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Thus
Mkn=—Mnk k #n

C
'k
M=~ 7

kk

The matrix M thus has the following structure

- . -

¢
S Mg Mg
M: -M -_(:_.2.... M
12 T3 23
C
3
"My My -
— -

Upon integration of (7.50) by parts it is found that

1 1
dfn dfk

“dz “dz

df )

I'kn = fk ) dz dz

-1

The first term on the right-hand side is zero from (7.43). A second partial integration of the second

term gives

dfn(z) d fk
Lkn= _(fk(z) dz - f fn 2

Thus L is a symmetric matrix.

The set fk(z) =cos [(2k = 1) wz] satisfies the requirements of (7.43) and (7.44). Since these
functions are also the eigenfunctions for o =0, the matrix L is diagonal with the elements given
by

_ 2 2
Ly =-@k-0)"n'A4
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The elements of M are found to be

k-1 (2k - )(2n - 1)

M =(-1) k>n
kn % - 1)2 - (2n - 1)
Mnk = -Mkn
-1
My =" 32
Also < = 1
k-1
_4 (-0
and qk(o) T 2k -1
The matrices and vectors of (7.47) are thus:
C=1
1 3 .3 e ]
2 2 7 ' -
_3 11 2
4 2 8 20
Mils L8 13
12 8 2 12
72 3 ]
24 20 12 2
i _
— -
1 0 0 .
2 0 9
L = - .L
4 0 0 25 0 ves
0 0 0 49
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O =, - -]

Approximate solutions were computed for the cases tabulated below
N=1,23,45 n = 0.0, 0.5 1.0, 2.0, 4.0
The results obtained, may be summarized as follows:

(o) For small values of time (or for probabilities greater than 0.8) convergence to
the solution tends to be stow. This is mainly due to slow convergence of the

cosine expansion of the constant initial condition,

(b) For the case & = 2aB¥0® = 0 the method tends to give accurate results. The

exact half life for this case is 0.375; using cosines we obtain 0.380.

(c) As the magnitude of « increases, the rate of convergence decreases. Consequently,

for large valuves of &, more terms are required.

Using the cosine expansion for N = 5 we have plotted the confinement probability for
a=0,1, 2, 4inFigure 7-5. Clearly the confinement probability increases with & . The half-
life, obtained from these curves, is plotted as a function of normalized system gain « in Figure 7-4.
Note that the average first passage time and the exact half-life have approximately the same general
behavior with respect to system gain, and hence that the mean passage time can be used to estimate

the half-life.

The lower bound on the confinement probability (6.5) is obtained by using the principal hyper-
geometric eigenfunction for V(y) and the principal eigenvalue for & . These values are tabulated
in [10). For o = 1, this "principal eigenvalue" lower bound is shown in Figure 7-6. The upper
bound (6.1) is given by

2
a<f\0)=erfl<° 5 - 1+exp <2ar)D‘V2] (7.53)

aB

and is also plotted in Figure 7-6.
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An approximate solution to the first-order equation

% = -fly) dy +é ?3%
oy
can be ohtained as follows: introduce the normalization.
=0 t/82
n =y/B

This reduces (7.54) to
2

_ 2 19
Fodmge s %
o
where ?(77) = "B‘f f(Bn)
(o)

with the boundary conditions

q@in) =1

q(rix 1) =0

ALL. .

We wiii now show that (7.56) can be reduced to a diffusion equation.

Let z =¢ph)
_dz _ ,
and aln) —Tﬂ =¢’'(n)
89 _ 3 3z _ 99
Then n 5% gl -
52 2 2 9
amd =g F + bl —F
an % 2

Substitute the above two expressions into (7.56) to obtain

(7.54)

(7.55)

(7.56)

(7.57)

(7.58)
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Ve B+ 5 B+ g

ﬁ’NI_:’N &NI_:,N

(7.59)
=(-f Lrey A, ] 2
=[-fm gl + 5 o"@) -+ 5 la)
Now select g(n) to satisfy the differential equation
g’ () =2ftn) o)
and we have
n .
g=Kexp[2 | f(w)dw] (7.60)
0
Then (7.59) becomes the diffusion equation
2
d 1 - 20
== 7 N =3 7.61)
where gz) =gnk)
subject to the boundary conditions
q(0]z) =1
(7.62)
q(r|+ Z)=0
1 n.
where Z=¢p(l)=K I exp[2 _f f(u) du] dn (7.63)
0 0
Introduce a further normalization:
= Z
L=z
Then (7.61) becomes
2
99 _1 2,439
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where y() = f1t49, (7.65)

Y4
subject to the boundary conditions
q(lg) =1
(7.66)
qir|x 1)=0

Note that if

T, < () < T, for lej< 1

then the solution to (7.64) is bounded between q, and q, s where q, is the solution to (7.64)
with ¥ replaced by T, . and d, is the solution to (7.63) with y replaced by r, .

With y =T = const , the solution to (7.64) can be expressed in the form

> (- 2 2.2
arlg =+ £ L . Gt N

T o K +1 leos 2k + D= &l (7.67)

Computationally, this solution is best for large times, and

ﬂ2T2

q(r]0) ~ % exp (- —5 Ty for large T (7.68)
For small times, the following form is preferable
pad n 2n + 1
qri0)=1-2 T (1) erfc [ ] (7.69)
| n=0 I/Zr
1
~ 1 -2 erfc for small T (7.70)
7=
In a linear system
Fly) =ay @.71)
Hence 2
ftn) = iiﬂ
(¢

and, if we let ¢ =082/02 we have
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n
o) =Kexp[2 | auduyl =Kexp[an2] (7.72)

0
T (62,3
and z=K j‘ e dx (7.73)
0
It is convenient to define K=/q, so
2 U2
g=va M =/ e (7.74)
n 2 U 2
z= | M d(/on) = J e dx (7.75)
0 0
where v=n/o (7.76)
Then (7.64) becomes
2
& _ 1 72(C) 99
ar 2 ac2
where nza
y = Vol _ Jo e 7.77)
FVom) /o 2
f e dx
0
and £ = F(/om) (7.78)

2
201 pym)

An upper bound to the confinement probability for the linear system may be obtained by using
¥ = 1.0, thus bounding the solution from above by the solution to a diffusion process shown in
Figure 7-6. From the figure it can be seen that the ¥ = 1.0 upper bound is a considerable im-

provement over the §(t|0) upper bound.
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7.4 First=Order Bang-Bang System

Consider the system

)°(=-csgnx+£ (7.79)

where £ is white noise with variance 0° 6(1). The confinement probability satisfies

%ﬂ:—cn ?—-}-i.ﬁ— (780)
t |y Sy 2 oy : .

subject to conditions (7.3) and (7.4) . Take the Laplace transform of (7.80) and apply initial
condition (7.4) to obtain

da 2C dN S ~ 2
—g;'—a‘g"’d -2 = (7.81)
dy o 4 (] g

~ 1 1

q](sly) = A]e + A2e vy (7.82)
where

1/2 1/2
- < .L_]_I 4+ c2/5° . —_C.___]_I’) 4 o2 /"
\‘— 2'6\25"-/3) r>‘2_ - o,\'-s <" /5”)
a [+
Using the boundary condition E](s/B) = 0, we have
I X]B -)LZB
= = (— 7.83

A2 ( —* A]e e (7.83)

Hence (7.82) becomes
i X]y 1 )\]B )xz(y-B)

'ﬁ'](sly) =5t A]e -( —+ A]e Je , 0<y<B (7.84)

Now let 'E|’2(s|y) represent the solution to.(7.80) in the interval -B <y <0,
Ay Xy

~ 3 4 1

q,(sly) = A3e + A4e +— (7.85)
where

1
A, = - <+ L (2 + c""‘/cra)]/2 ond A, =- —— -L—(2s+cz/0‘2) /2 .
3 0’2 g 4 03 (o]

71



Using the boundary condition ’q‘z(sl-B) = 0, we have

-2.B +X,B
1 3 4
A4—-(S—+A3e Ye (7.86)
Equation (7.84) becomes
1 )\3)' ! -)\38 )\4 (y +B)
Bl = +Age O -( - Ae O )e ,-B <y <0 (.87

Since the required solution must be differentiable at the origin and symmetric, we must have

dg dq,
M| Fl ) (7.88)
dy y=0 dy y=0
Therefore,
A
1 2
S alire X8 X8 (7.89)
A.e 2 -e ! A
1 2
A
| 4
A = — (7.90)
3 s X4B )\38
)L3e —X4e

and, after some manipulation, Ti](sly) and 'Ez(sly) become

\ Ay Ay
~ 1 2® -A]e
ql(5|)')='s—<' *.B )\B)'O<Y<B (7'9])
Ae | Ae 2
2° 1€
Ay Ay
_ i )\4e -A3e
o =5 (- ) Ry <O 7.92)
J\4e -)\3e
Note that )\4 = - )\] and )\3 = - A] . Therefore, the above two equations may be combined to

yield
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FIGURE 7-7

RATIO OF EXPECTED FIRST PASSAGE
TIME FOR FIRST-ORDER BANG-BANG SYSTEM
TO EXPECTED FIRST PASSAGE TIME

FOR INTEGRATOR
20

15

10
5 //
T.0 2.0 3.0
NORMALIZED GAIN x = Be/o®

To) /T
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cosh By - —oé- sinh By
! Ay |
Asly) = — (1 -exp[-eB (1~ &) ] = , -B<y<B (7.93
cosh BB F sinh BB
where
c
o =
2
a

2 1/2
g - c Q+ 25g )
2 2
ag (o]

It is noted that (7.92) is again a meromorphic function of s,

Accordingly, following the procedure
of example 7.1 , the inverse Laplace transform of (7.92) gives

-s, t

exp [—OtB(] -—LBL\) J(cosh Bky -L

q(tly) = ce ﬁk sinh Bky) (7.94)

=1

A~

where the s

k

are the eigenvalues or poles of ¥(sly), i.e., the zeros of the transcendental equation

cosh ,33-; sinh 88 =0

and B | are the corresponsing values of 8.

The average first passage time can be found from (5.18) and (7.92) to be

2x
T(O)z T <e '2X"]>
0 25?
x

(7.95)
Where R
TO = %— = average first passage time for integrator (see (7.11).
g
Bc
X = ———
2

The ratio T(O)/T0 is shown in Figure 7-7 . Note that the average first passage time increases
rapidly with c.
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7.5 Double Integrator With White Noise Input

Consider the double integrator system

(7.96)

where 3 and x, represent velocity and position respectively. Consider the problem of calculating

the position confinement probability

q2(t|y],y2) = Prob [ X ,(A)| <B, for e [0,+31X,(0) =y, X,(0) =y,}

Note that {XZ} is not a Markov process by itself; the process {X] ,Xz} . governed by (7.96)

however is a two-dimensional Markov process, and hence 9, satisfies the backward equation

2

29 29 2 3%q
2., 2.9 _2 (7.97)
ot V%, 2 )
with the boundary conditions
qz(fl)']:i Bz)= 0, all t, Y] (7.98)
Iirlwq2<fiy,,y2)= 0, aii t, y, (7.99

4
The problem (7.97)-(7.98) does not appear amenable to exact solution, and we thus
proceed to compute bounds by the methods of Section 6. The upper bound 6.1)is
4(tl0) = Prob {|X2(t)|< 32|x2(0) =0}

This is easily calculated from

. 2
§(tlo) = | ‘ra Px)s%g s t{0) dx,) dx (7.100)
= B,
where, by use of (4.13) and (4. 15), it is found that
23
1 12 o4° 2 22 2 2
p(x x,tl0)=-—2-2—-— exp [-% — (5= x] =0t xx +6x5) ] (7.101)
172 27 (0"t°/2/3) ot ! "2 2

Substitute (7.101) into (7.100) to obtain
75



q(tl0) = erf [/3/273/2 ] (7.102)

where T is the normalized time, defined by

.2 1/3
T = t (7.103)
)

We have not been successful in obtaining a lower bound by the methods of Wonham or Kushner.
However, for this problem a lower bound can be found by the third approach described in Section 6.
This method consists of seeking a solution in the form of the characteristic function (4.19). Speci-

fically, we try a solution of the form

qc(fly) = mz,n A exp [-%y My gyt (7.104)
where 021' 02t2/2
M =

A2 oA
is the solution of the variance equation (4.15) for the problem and
H 4
“ = =
Ha ALRES!

is the conditional mean, satisfying (4.14), and u:nn = [Ln’km:j with Ln and km being arbitrary
"constants. Since each term of (7.104) is a characteristic function for the conditional transition density
function, it follows that 9. satisfies the backward equation satistied by 9, - Thus, if the boundary
conditions (7.98) and (7.99) for 95 could be satisfied by q. by an appropriate choice of Ln and
km' the problem would be solved. Because Mo is a function of time, however, it is not possible to

satisfy (7.98) and (7.99) by 9, Rather, it is possible to satisfy the following condition:
a .t B,y = q ttly,, (B, -ly,In) =0 (7.105)

It is clear that the region enclosed by the boundaries defined by (7.105) is contained within the bound-
aries defined by (7.98) and (7.99) and hence q, servesasa lower bound on q - Upon expression of
the complex exponentials in terms of sines and cosines, and after using the boundary conditions (7. 105)

and the initial condition
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| qc(olyl’y2) =
0 elsewhere
it is found that
1r202 o 41
16 ® - 1 DE: 2k + 1
qc(fl)']lyZ) = "2’ kEO LE=0 ( ) T e cos (—ZB]— ‘ﬂ'y.l)
(7.106)
- cos [2—;{2—] m (y2+y]t)]

where

k{,(t) (2k + l)

SN )2 @2 1)
5,5, 7
B] 38,

(Note that as 82 ~®, 9.7 q

of (7.8) as it should.) Now, from (7.106) as B] - @ the lower
bound for q2(1'|0) becomes

42 (- )4 2 73
qc(rl0)=1—7 = mep[-—ﬂ—(%'”)]
with T given by (7.103). This lower bound, along with the upper bound (7.102) and the results of a

Monte-Cario simulation are shown in Figure 7-8. The figure indicates thai the normaiized half-life,
with respect to the position limit By, s

28§ 173

Galerkin's method can be applied to this problem by replacing the boundary condition (7.99) by
qtl = By,yp)= 0

‘rh=l, or

with B] >> 1

and using the initial condition

aOly,.y) =1 for ly,| <8y,

This represents a lower bound on q2(f|y],y2)
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Using sines and cosines as the orthogonal functions in each direction we assume a solution of the form

lax Jry

tly.,y)= T La, (1) si i
q 74 Y2) i tj()sm T sin "B‘;

+ BLJ(f) cos (2212—3:)"" cos (ij-le)"Y ]

The ordinary differential equations for the time functions atj(t) and Btj(f) can be expressed in

the following form:

. _ tJ
by = kg0 B, L By
S )
Bz:j = kzLCJ"' °‘Lk+htBtJ
where .
o 22,2
2.0 22

h. = _o(2t -1

v 88,
RYRERVAT By 1J (2 = )@t - 1)
tk 22 B k- 1nZ-asZ1al - 2t - 1202

in which ¥ is an integer which dependson ¥, J, k, and 4. A numerical solution shown in
Figure 7-8 was computed for N =2 with IB]I = |52| =1. This result appears to lie between the

upper and lower bounds for values of normalized time greater than 1.2,
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FIGURE 7-9
NONLINEAR CONTROL SYSTEM




7.6 Second-Order Nonlinear System

Consider the nonlinear system

X, = Aulx,,x,) + &
! 12 (7.108)
27N
where x; ond X, represent velocity and position, respectively, A is a constant, £ is a white noise

random disturbance with variance 026 (t), ond

+) x‘+kx250, x2<0
u(xl,xz) = 0 for all other values of Xyr %o {7.109)

-1 Xtk >0, x,>0

2 2

Is shown in Figure 7-9 along with a typical trajectory in the deterministic case (£ = 0).

Consider the problem of maintaining the position within bounds |x2| < B. No analytic solu-
tion for the confinement probability has been obtained. Our ottempts at obtaining estimates are il-
lustrative of the difficulties involved in establishing quantitative measures of stochastic stability for

nonlinear systems.

A Lyapunov function that was investigated is the total fuel consumption in the deterministic

case,

.2 ]
V = ke + |x2| + |x2+k-x‘|) (7.110)

It can be easily shown that in regions of constant torque, V=-1 , whereas in the coosting regions
V =0. However, because of the comers which appear in curves of constant V , this function does
not have the derivatives required by the theorems of Wonham and Kushner and thus cannot be used to

obtain lower bounds on the confinement probability.

4 4

Monte-Carlo simulations of confinement probability vs. time for A =5x 107, I1x10,
5 x 10-5, 25 x 10-6, and 5x IO-6 are shown in Figure 7-10. As expected the lifetime increases
with the magnitude of the torque. A plot of the half-life vs. A for a fixed slope of 0.071 is shown
in Figure 7-11. We have also obtained a plot of half-life as a function of A for four values of the
slope of the switching line. (See Figure 7-12.) In the region of acceleration magnitude between
1x 107 and 4.6 x 10-5 the half-life varies inversely with the siope and increases with the
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acceleration magnitude. At approximately 7 x 10-5 the four curves merge indicating that at this
value of acceleration the half-life is independent of slope. For values of slope of .02 and .04 the
half-life curves reach maxima at 4.6 x 10-5 and 5x 10_5, respectively, indicating that, at

least for small values of slope, there is an "optimum" choice of acceleration magnitude corresponding

to a given switching line slope.

Since it is relatively easy to obtain bounds on the confinement probability for linear systems,

we have calculated upper bound (6. 1) for the linear system

z.=wz
] 2
(7.111)
2o = ez - o
2 wz] 2€w22+w—€
where Xy
Z] azx2 Zzz —w—' (7.”2)

The behavior of (7. 111) is qualitatively similar to the nonlinear system (7. 108); the constants §
and w were determined in terms of the parameters of the nonlinear system as follows: Assume

that with £ = O the nonlinear system is initially in state (x 0) then assume

107

a) z, and x2 attain their first maximum at the same time,

b) the maximum amplitude attained by %, is some multiple ¢ of the bound on the size
of the region, and

c) z, and Xo have the same change of magnitude in the first cycle.

These conditions lead to the following formulas

2 _L(k,A,B)

§ =5 (7.113)
41° -L(k, A, B)
m
“‘z[zax, 1 - _L0AB )]1/2 (7.114)
-
41" - L(k,A,B)
where 2BL
i
Lk,A,B) =2n 1,3 .28t 21 +2M]1/2> 1/2]2 .13
T E R R
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2
For the parameter values k = .171, g%— =200, £ =10 we find that for A =5 x ]0-5 we have

£=.046, w=3x 10-3 and for A Zx ]0-6 we have § = .05, w =3.83 x 10-4. Using the same
procedure as in (7.100)-(7.102) we find that a(fIO) , an upper bound to the confinement probability
for the linear system, is as shown in Figure 7-13 along with the corresponding Monte-Carlo simula=-
tions. From the figure it can be seen that §(t{0) for the linear system has the same general behavior

as the Monte~Carlo simulation and thus could possibly be used in estimating the lifetime of the non-

linear system.
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8. APPLICATIONS

One of the major practical problems in the application of the results of stochastic control
theory is the establishment of the qualitative and quantitative characteristics of the sources of
random excitation. As an example of how this problem might be approached, consider controlling
the attitude of a satellite or space vehicle. The objective of the control system is to maintain a
precise attitude (with respect to an appropriate reference system) in space, in the presence of
random torques acting upon the vehicle. It is convenient to separate these random torques into
two categories: torques due to the external environment acting on an "ideal" vehicle, and those
due to the departure from the ideal. The torques due to the external environment are primarily
the result of the bombardment of the vehicle by energetic particles of various types (photons,
electrons, micrometeoroids, etc.) Torques due to departure from an ideal configuration might
be caused by the leakage of gas from valves or holes in the vehicle, undesired motion of mecha-
nical parts within the vehicle, or lack of symmetry with respect to the environment. The effect
of a lack of symmetry is exemplified by the familiar radiometer, in which radiation pressure

causes rotation of the unsymmetrically-reflective rotor structure.

In principle, it is possible to build a vehicle in which the torques due to the departure
from the ideal are negligible in comparison to those due to the external environment, and it is
thus of interest to consider the effect of the environmental torques on the motion of a typical
vehicle. (In practice, the environmentally~-caused torques may be many times smaller than those
due to departure from the ideal, but the latter, which depend on many variable factors such as

quality of construction, are difficult to assess.)
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FIGURE 8-1
IDEAL SPACE VEHICLE CONFIGURATION

PARTICLE
FLUX

PARTICLE FLUX
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Consider an idealized space vehicle having the configuration shown in Fig. 8-1. Motion about
one axis only will be considered here. It is assumed that the vehicle consists of a heavy core {with
inertial J about the axis of rotation) of negligible area in comparison with two massless paddles, each
of area A, rigidly fastened to the body by rods of length r. The random torques are assumed to be due
to the random impact of many particles of various types; the average flux of which is uniform through-
out space. (Solar radiation pressure is assumed to be the macroscopic effect of the impact of photons,
which are assumed incident normal to the plane of the paddles. The reflectivities of the paddles are

assumed to be identical.)
Each particle source is assumed to be statistically independent of all the others.

As a consequence of the assumption that the vehicle is dynamically balanced and that the particle
flux is uniform, there is no mean torque on the vehicle, and hence no mean angular acceleration. In
an infinitesimal time interval A&t , however, the actual particles impinging on the right hand
paddle will invariably differ from those on the left and thus the vehicle will exhibit random rotation
about the axis, and may thus wander from its equilibrium position. The first problem is thus to obtain

a statistical model for the torques which cause this rotational vibration.

For deterministic torques acting upon the vehicle, the angular velocity w about the axis of

rotation is governed by the differential equation
J dw/dt =T (w, 8, ...)+ £ 8.1)

where J is the moment of inertia obout the axis of rotation, T is the restoring torque developed by

the vehicle control system, and £ is the total disturbance torque.

In the present case ,however, the external torques are due to the superimposed random collisions

of particles with the paddles. At the instant a particle strikes a paddle an impulsive torque is produced;
at all other times the external torque is zero. It is thus more appropriate to consider the incremental

change dw in angular velocity, given by
Jdw=T(w, 8, ...)dt + dn (8.2)

where dm is the incremental angular momentum due to the random impact of particles in the differ-
ential time interval dt. For simplicity, we assume that the dimensions of the paddles are small
compared with their distance from the axis; consequently all particles can be assumed to be acting at
the center of the paddle. We thus can write
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dm = r dw

where dw is the total normal component of linear momentum transferred to the paddles in the inter-

val [t, t + dt]. Thus (8.2) becomes

dw (8.3)

and our problem is now to characterize the random process dw . On the basis of rather meager
experimental evidence it appears reasonable to assume a Poisson distribution for the probability Pn

of the arrival of exactly in particles. Thus the particle bombardment can be modeled by a Poisson
impulse process ond the riormal component of linear momentum can be characterized by the Poisson
step process (2.4). The probability o(z)dz of (2.5) in the present situation denotes the probability
that the normal component of linear momentum transferred by a single particle is between z and

z + dz . This probability depends on the nature of the surface, and may range from a fraction of the

momentum of the particle to twice the particle momentum if the collisions are perfectly elastic.

If it is assumed that the momenta transferred by the individual particles are independent, the
analysis in Section 2 is applicable and as Q- , where Q is the average number of arrivals of

particles in the interval dt, the probability density function p(x, dtly) is given by (2.10).

it is noted that 02 = )\82 {which, in this sifuation, has the dimensions of (momentum)z/time) is
nonzero even though the vehicle is perfectiy balanced, because of the random nature of the excita-
tions . The representation of dw as a Wiener process, however, permits the representation of the
process by two parometers: the average arrival rate A , and the mean-square linear momentum & °,
Because the exact nature of the probability distribution of momentum is generally not known, the
evaluation of & ~ isa practical problem. In examining experimental data it may be easier to
consider ';z (x), the density function of a process causing rotation in only one direction, say
clockwise. Llet é (v) be the characteristic function corresponding to 9 (x). Assume that particles
causing counterclockwise rotation have identical statistical properties as those causing clockwise
rotation except that the probability density function for the counterclockwise linear momentum is
$(-x). Then the characteristic function for the counterclockwise process is E)(—v) and Q(v) =
QW) Q(-1) . We find from (2.9) that
2

. _2
o =2[ | x 'y(x)dx+r'r‘|2]z4m
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where

@

m= J x ¥ (x) dx
o 2
Therefore, the minimum value of o is 4X ma . Table 1 gives estimates of this value of 0‘a per

unit area (A) for several sources of exciting particles.

TABLE 8-1

Estimates of Variance for Various Environmental Random
Excitation Sources

© = A/A o*/n

particles/ [ (dyne-sec) /
Source sec-cm? dyne-sec sec-cm?
Photons 2 x 10*® 2.5 x 1072° 52 x 10 2¢
Nucleons 1.5x 107 2.2 x 1074 29 x 107 **
Micro- 10°7 (See discussion 22x 1077
meteoroids below)

The calculation for photon was based on the assumption that m =2 x Planck's constant/wave-
length with the average wavelength taken as 0.54 x 10-4 cm; ¢ was computed by assuming ¢ = P/m
where P is the solar radiation pressure of 0.43 dynes/cm?.

The computation for nucleons was made on the basis of the data in Reference 11 which corresponds

to a period of fairly high solar activity.

The calculation for micrometeoroids was based on the following empirical law for the micro-
meteoroid flux inferred from Pegasus satellite measurements [26 7.

o= Kku? B< (8.4)
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where ¥ is the flux (particles/m® -sec) of particles of mass >4, K and B are constants which
depend on the altitude of the vehicle. The upper and lower limits of mass are, respectively
By= 1gm and K, =10"1° gm. Thus the number of particles having mass between K and

H+ di s

2

dp = -K(H+ le)ﬁ+ Kl-tﬁ= -Kﬁ#ﬁ- ‘d# (8.5)

The total flux ¢ is obtained by integrating (8.5) between #] and #2:

@ = fz dyp = K(#]B- #2'9) (8.6)

Hy

15 and 8= -1.2. Substitution of these values into (8.6) gives

For an altitude of 1000km, K = 10~
Q= ]0-3 porficles/m2 -sec = 10-7 porticles/cm2 - sec. To obtain the momentum probability dis-

tribution we assume that each particle has a constant velocity V(~ 27 x 10° cm/sec, Reference [26]).
Then dy of (8.5) is also the flux of particles having momentum between uV and pV +d(uV). The

ratio of dyp to ¢ is the probability density function for momentum. Hence

B-1
[$m)dm = | ﬁ%-—f'ﬂ mismsm, 8.7)
mt - m?
2 1
m] = lJ]V
m, = IJvZV

The mean momentum is thus given by

m B+1 B+1
I T Y T s
m= [

B .8 BT BB

My My ™M




and the variance is given by

M2
62 = | 7———’3"‘&]"’“ - R
m m2'mﬁl

Using m, =27x 10°° dyne-sec and m, = 27 x 10° dyne-sec, and B=- 1.2, we find that

|
- -3 ~2 2
m =1.6x10 dyne-sec, G~ = 22 (dyne-sec)

Because of the shape of the probability density function (8.7) m~ is much smaller than 2. (The
same problem could very well arise for other sources of excitation when ‘;’(m)_is highly skewed.)

The confinement probability with respect to angular velocity for a spacecraft in the absence
of any restoring torque can be calculated with the aid of (7.8) obtained in example 7.1, The

velocity half-life is obtained from (7.19):

t, =0.75 — (8.8)

where

c =10
J

B] = angular velocity limit

It is of interest to estimate this half life for a typical spacecraft such as Mariner 1V, having the

following dimensions

area A =8x 10%cm?
moment arm r =200 cm
8
moment of inertia J =8x 10 dyne-cm-sec.
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¢ Using an angular velocity limit B] = 2 deg/sec. and the o /A ratio of Table 8.1, the angular
velocity half-life, as a result of each environmental disturbance source of Table 8.1, is given
in Table 8.2,

TABLE 8.2

2.0° / SEC HALF-LIFE OF ROTATIONAL INERTIA

Partial Source Half-Life
23
Photons 10  years
18
Nucleons 10 years
4
Micrometeoroids 10 years

Evidently , these sources of excitation are not significant confributors to random wandering of angular
velocity from the equilibrium condition,
With regard to angular position, the situation is quite different. From (7.107) in example 7.5

the angular position half life is given, approximately by

= 1/3

where B is the angular position limit. For B, =1 degand the vehicle with the physical parameters

2 2
listed above , the angular position half life computation yields the numbers listed in Table 8.3.



TABLE 8.3

1.0° HALF-LIFE OF ROTATIONAL INERTIA

Particle Source Half-Life
Photons 400 years
Nucleons 10 years
Micrometeoroids 2 hours

It is seen from Table 3 that micrometeoroids are likely to be a source of environmental disturbance
of major practical concern. Photons and nucleons are not significant by comparison. It should be
noted that the Wiener process which was used as a model for the source of random increments in
angular momentum may be less than adequate for micrometeoroid bombardment; in the time interval
equal to the computed half-life t, ©f 2 hours of Table 8.3 (based the Wiener process model), the
expected number of particles is

N=pA h o~ 6 particles

where @ is the micrometeoriod flux (Table 8.1). This is far from being a large number. In Example
7.2 it was determined that the half-life for angular velocity is conservatively estimated by using

the Wiener process model, i.e., the actual half life is somewhat larger than computed using the
Wiener process model; it is not presently known, however, whether the half-life estimate for
position is also estimated conservatively. To determine the half-life more accurately would entail

using the integral form (3.42) of the backward equation.

In the above estimates of half-life it was assumed that no control torque was used to restore the vehicle
to the desired equilibrium position. it is reasonably clear that to maintain precise attitude of a space
vehicle some type of control torque is needed. The example of Section 7.6 shows that a modest
amount of control torque can materially increase the confinement probability. When a restoring
torque is provided by an active control system, however, it is necessary also to consider the imperfections
which might be present in the control system itself. A situation which may arise is typified by the
recorded behavior of the Mariner 1V spacecraft, A segment of the single-oxis disturbance torque
(computed from actual telemetry data [27]) is shown in Figure 8.2. It would appear that this

disturbance torque has three components,
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@) A constant bias of about 20 dyne=cm. This bias can possibly be explained as being
caused by the solar reflectivity unbalance. The total force acting on a paddle of 8000 em? in area
is about 3000 dynes; acting through a moment arm of 200 cm, this gives a torque of 600,000 dyne~cm
to be balanced. Hence a 20 dyne-cm torque represents a 0.03 percent unbalance, which is probably

realistic. This constant bias torque represents the major source of disturbance, but could probably

be "calibrated out" in actual flight.

(b) A (Zero-mean) Poisson step process. A very crude calculation for 19 transistions indi-

cates that (to one significant figure of accuracy) the parameters are

standard deviation: & = 4 dyne/cm

average transition rate: X =0.02/hr

The Jet Propulsion Laboratory engineers who have reviewed this data attribute this disturbance

source to gas leaks in the control jets which were used to provide the restoring torques.

{c) A Poisson impulse process. The data reviewed was not sufficient to determine the para-

meters of this process, the source of which could very well be due to micrometeoroid bombardment.

If one assumes that jets which provide a smaller restoring torque would also provide propor=-
tionately small leakage torques, one can speculate that there is some optimum restoring torque level

beyond which the disturbances resulting from gas leaks result in more random motion than caused by

the micrometeoroids.
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9. SUMMARY AND CONCLUSIONS

We have endeavored to show that many problems in randomly-excited dynamic systems can be
studied through the partial differential equations (i.e., forward and backward equation) which
govern the evolution of conditional probabilities and expectations. In particular, the stability

problem is associated with the solution of the backward equation

ﬁsoi_ftiﬁ = L latly)? 9.1

on the interior of a region with q = 0 on the boundary. For the process
dx = f(x) dt + Gdw (9.2)

where dw isa Wiener process with covariance matrix Zdt the backward operator is

v -Dy D=GZG’ (9.3

Iy=f()') . vy+ y y

N —

An upper bound on q(tly) is t|y), the probability that the state is inside the specified region
at time t, regardiess of whether the state has left the region at some earlier time and returned
subsequently; ﬁ(f| y) can be computed by integrating the transition probability density over the
region, and an explicit formula for the transition probability density is available for linear systems.
For nonlinear systems, the technique of calculating the confinement probability of an equivalent
linear system seems promising. In section 7.6 we calculated a bound on the confinement probability
for a second order linear system. Since this ad hoc procedure gave reasonable qualitative results the

technique should be investigated in more detail.

The techniques for obtaining a lower bound on g are not entirely satisfactory in many situations,
Kushner's lower bound, based on Lyapunov theory, has the same deficiency as in deterministic
systems: the quality of the estimate depends on how successful one is in guessing the appropriate
V-function. Wonham's lower bound has a similar difficulty. Once a function V(y) is selected to

satisfy (6.3), one must find a constant &, if such a constant exists, to satisfy (6.4). Of course,
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if one can find a solution to (6.4) with equality then the minimum eigenvalue of the operator
gives the best lower bound in (6.5).

In many practical situations (e.g., space-vehicles) the covariance matrix T is small. A
readily-computed approximate solution to (9. 1) would thus be quite useful, particularly if it can
be used as a bound on the exact solution. One would think that the solution of (9.1) in the
"noise free" case (L =0) could be used to generate solutions when the noise is small. Unfor-
tunately for asymptotically stable system (9.2) the solution to (9.1) for T=0 is qt|ly) =1,
whereas for any Z > 0 we showed in Section 5 that q(t|y) =~ 0 as t - ® so that nature of the
solution has changed completely in introducing only small noise. On the other hand if one were
to consider for an asymptotically stable system the first passage time to the boundary of a region
given an initial state outside the region, a "low noise" solution can be obtained by proper iterations
on the "noise free" solutions. If a relation could be found between this passage time and q(t|y)

a method of using a noise free solution to obtain an estimate of q(t|y) in the low noise case would

be awailable.

A technique suggested by W. M, Wonham should also be investigated as a means for solving
the low noise problem. If we let a(tly) =1 -q(tly) and take the Laplace transorm of (5.1) we
find that

Lyt -sably) =0, yeN
a6ly) = -l-, yeaN &9
Then
wl- [ 6, ez ey e, yean 9.5

where v(z) is a unit outward normal to the boundary dN, 3p/9z is the gradient of P, dSz is

an area element of 3N, and the double layer density 7i(s, z) satisfies
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1= 06, y) - ] u6, 2 2 (sézz Ly dS_,  yedN  (9.6)
aN
For the low noise case one would attempt to solve the integral equation (9.6) by successive approxi-

mation for the first few terms. This technique deserves further investigation.

Because of the difficulties described above it appears that numerical methods, such as Monte-
Carlo simulation and Galerkin's method, are likely to be the favored approach in most nonlinear
systems.

White noise is taken for granted as the source of random excitation in most analytical inves-
tigations. As the above example of micrometeoroid bombardment has illustrated, this assumption may
not always be justifiable. It would thus be of considerable interest to establish how much error
results when white noise is used to model other processes, such as the Poisson impulse process.

In example (7.11) it was shown that when white noise is used to model the noise input to a
single integrator the half-life of the system output is 32% below that obtained using a Poisson
impulse model. It would be interesting to determine the class of problems for which white noise
gives a conservative estimate of system stability.

Since explicit solutions to (9. 1) are very difficult to obtain the problem of calculating bounds
on the confinement probability was considered in Section 6. This problem deserves more attention.
in example (7. 1) it was found that P, ) - po(t) was a lower bound on qft{0) . Since P,~ Pg

is easy to calculate for many systems, the problem of finding general conditions for which p, - Po
is a lower bound should receive further attention.

Much more work is needed on the statistical characterization of the physical sources of random
excitation. Even in the limited class of random excitations considered in Section 8, for which the
Poisson mode! would appear to be reasonable, the particle flux ¢ and the momentum distribution can
be estimated only crudely. These sources of excitation, moreover, are probably much less significant
than those caused by departure from the ideal. The solar radiation, for example, will act as a constant
torque, the effect of which can far outweigh the random component of the motion. Other sources of
random disturbance, such as leakage from a gas jet due to unpredictable imperfections in valve seating,
are also likely to be more significant than environmental sources. |f the analytical techniques of
stochastic control theory are to have any practical impact, experiments will ultimately be required to

obtain the data from which the statistical models can be inferred.
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APPENDIX 1

BIBLIOGRAPHY ON
RANDOMLY-EXCITED DYNAMIC SYSTEMS AND
STOCHASTIC STABILITY

INTRODUCTION

The following is an annotated bibliography of selected books and papers dealing with
various aspects of stochastic processes. No claim of completeness is made and it is hoped

that this bibliography will be continuously expanded.

The bibliography is divided into 6 parts. Part 1 consists of readable introductory
accounts from several viewpoints. Books and papers on the rigorous mathematical theory of
stochastic processes are contained in Part 2. Various definitions and theories on stochastic
stability and the related subject of renewal theory appear in Part 3. Solutions or approxi-
mate solutions to problems of engineering significance are contained in the papers of Part 4,
Part 5 contains related mathematical literature. One book on deterministic stability is listed;
the remaining references contain material on topics of partial differential equations which
might be useful in the investigation of stochastic stability. Part 6 consists of a number of

papers and reports describing physical sources of disturbances.
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1. BACKGROUND

Barrett, J.F., "Application of Kolmogorov's Equations to Randomly Disturbed Autome
Control Systems,” Proceedings of First IFAC Congress, pp. 724~733, 1960.

This paper derives the forward and backward equations for the randomly perturbed dync
system y = f(y,t) + 1), wherey = (y, , Yo 1 eee s ¥y ) 7 =1lin (6n/8t)as 6t =0,
subject to the following general hypothesis: the disturbances 6]"’ 6217 in any two small
consecutive time intervals are statistically independent. Examples of first and second-

order feedback systems are used to illustrate the solution to special forms of the forward
equation.

Bharucha - Reid, A.T., Elements of the Theory of Markov Processes and Their Applications,
McGraw=Hill Book Company, Inc. , New York, 1960.

This book presents a nonmeasure - theoretic introduction to Markov processes. |t is divided
Into two parts: Part | contains three chapters dealing successively with processes discrete
in space and time, processes discrete in space and continuous in time, and processes
continuous in space and time. Part 1l consists of six chapters devoted to applications in
biology, physics, astronomy and astrophysics, chemistry, and operations research. Each
chapter contains an extensive bibliography.

Chandrasekhar, S., "Stochastic Problems in Physics ond Astronomy, " Rev. Mod. Phys.,
Vol. 15, No. 1, 1943 (reprinted in N. Wax (ed.) Selected Papers on Noise and
Stochastic Processes, Dover Publications, New York, N.Y,, 1954.)

As its title indicates this monograph ~ length paper presents many applications of the theory
of Brownian motion to problems in physics and astronomy. Chapter | is devoted to the
general problem of random flights and to the problem of random walk. In Chapter Il the
theory of Brownian motion is presented, including the Langevin equation and the Fokker-
Planck Equation. Chapter 111 describes probability methods in the theory of coagulation,
sedimentation, and the escape over potential barriers. In Chapter IV problems in stellar
dynomics are considered. A rather complete set of bibliographical notes gives references
to many of the original papers on Brownian motion.
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Kushner, H.J., "On the Status of Optimal Control and Stability for Stochastic Systems, "
IEEE International Convention Record, Part 6, pp. 143-151.

This paper is a sequel to the paper presented by the author at 1965 International Convention
of the IEEE (see below). The paper is concerned with linear and nonlinear diffusion models
and with stochastic optimal control problems. A bibliography, consisting of 56 references
in the area of stochastic control theory, is also included.

Kushner, H.J., "Some Problems and Some Recent Results in Stochastic Control," EEE
International Convention Record, Part 6, pp. 108-116, 1965.

This paper, written as a survey of recent work with some new results, presents applications
of stochastic stability theory to the design of optimum feedback control systems. The paper
contains some remarks on noise sources and dynamic models for random processes as well as
a list of 58 references in the areas of stability and optimum control.

Lax, M., "Classical Noise I11: Nonlinear Markoff Processes, " Review of Modern Physics,
Vol. 38, No. 2, pp. 359-379, April 1966.

This is the third paper of a series by the author in which fluctuations from the nonequilibrium
steady-state are studied in detail. This paper deals with nonstationary processes and pro-
cesses for which a quasilinear approximation is inadequate.

Lax, M., "Fluctuations from the Nonequilibrium Steady-State, " Reviews of Modern Physics,
Vol. 32, No. 25, pp. 25~63, January 1960.

This paper deals with Markovian noise in the stationary state by quasilinear methods, An ex-
tensive bibliography is inciuded.

Lax, M. and Mengert, P., "Influence of Trapping, Diffusion, and Recombination on Carrier
Concentration Fluctuations, " J, Phys. Chem. Solids, Pergamon Press, Vol. 14,
pp. 248-267, 1960,

In this paper the methods developed in the above reference are applied to determine proper-
ties of carrier concentration fluctuations.

Rice, $.0., "Mathematical Analysis of Random Noise," Bell System Technical Journal,
Vol. 23 and 24 (reprinted in N. Wax (ed.) Selected Papers on Noise and Stochastic
Processes, Dover Publications, New York, N.Y., 1954,

This monograph-length paper, devoted to the frequency domain analysis of random processes, ;
is divided into four parts: part 1 deals with the shot effect in vacuum tubes and gives ex-
pressions for the mean and standard deviation; part Il consists of an analysis of power spectra
and correlation functions; part Ill describes the statistical properties of random noise currents;
and part IV considers the effect of passing noise through nonlinear devices.
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Uhlenbeck, G.E. and Ornstein, L.S., "On the Theory of the Brownian Motion," Phys.
Rev., Vol. 36, 1930 (reprinted in N. Wax (ed.) Selected Papers on Noise and
Stochastic Processes, Dover Publications, New York, N.Y., 1954,

This paper gives the physicist's view of work (up to 1930) on the theory of Brownian motion.
The general assumptions of early workers in the field are summarized and the frequency dis-

tribution of velocity and displacement are derived for a free particle in Brownian motion.
The Brownian motion of a harmonically bound particle is also considered.

Wang, M.C. and Uhlenbeck, G.E., "On the Theory of the Brownian Motion Il," Rev.

Mod. Phys., Vol. 17, Nos. 2 and 3, 1945 (reprinted in N, Wax (ed.) Selected Papers

on Noise and Stochastic Processes, Dover Publications, New York, N.Y., 1954.

This paper contains a review of the basic definitions of random processes and a comparison

of two approaches to the theory of Gaussian random processes: spectrum analysis and solu-
tion to partial differential equations. It also contains an analysis of the Langevin equation
and of the Brownian motion of an nth order linear system.

Wonham, W.M., "Advances in Nonlinear Filtering, " Lecture, M.l.T., Summer Session,
1965.

These lecture notes emphasize the importance of stochastic differential equations and
stochastic calculus in recent approaches to nonlinear filtering. A description of the phy~
sical significance of the Itd and Stratonovich definitions of the stochastic integral is also
included.

Wonham,W .M., "Stochastic Problems in Optimal Control;'" IEEE Internat. Convention
Record, Part 4, 1963.

This survey paper presents an introduction to stochastic control theory as it developed up
to 1963. A stochastic Hamilton-Jacobi equation is used to obtain the optimum control
law for a linear regulator with a quadratic performance index. A historical note and a
bibliography of 53 items are also included.
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2. MATHEMATICAL FOUNDATIONS OF STOCHASTIC PROCESSES

Doob, J.L., Stochastic Processes, Wiley, New York, 1953,

This book presents a thorough treatment of stochastic processes (both discrete parameter

and continuous parameter) from a measure-theoretic point of view., Topics covered include
orthogonal random variables, markov processes, martingales, processes with independent
increments, processes with orthogonal increments, and linear least square prediction. A
supplement on various aspects of measure theory is also included.

Dynkin, E.B., "Markov Processes and Semigroups of Operators, " Theory of Probability
and its Applications, Vol. 1, pp. 22-33, 1956,

In this paper the relations between various semigroups of operators and between various
infinitesinal operators connected with a homogeneous in t Markov process are investigated.
General conditions are established under which the Markov process is determined by its
corresponding infinitesimal operator.

Let Ut be a semigroup of linear operators in the Banach space L such that HUt Il <.

Let T = U _be an adjoint semigroup in the conjugate space B = L*., More abstractly the main
object of this paper can be characterized as the study of semigroups T, and its infinitesimal
operators in strong and weak topologies of space B. (Author's summary

Dynkin, E.B., "Infinitesimal Operators of Markov Processes, " Theory of Probability and
its Applications, Vol. 1, pp. 34-54, 1956.

This paper contains a proof of the statement: every continuous Markov process in a space
of arbitrary demension is governed by

du

3 ° Lu
where L is a generalized elliptic differential operator of second order. The paper also

contains the definition of a strong Markov process, -and describes the method for calculating
infinitesimal operators corresponding to Markov processes.
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Dynkin, E.B., Markov Processes, Academic Press, New York 1965,

This two volume book presents what has become the modern mathematical approach to the
theory of Markov processes. The book is divided into five principal parts. In chapters

1-5 the general theory of homogeneous Markov processes is described using properties of
infinitesimal and charocteristic operators, Chapters 6=11 are devoted to additive
functionals, transformations of processes and 1t8's theory of stochastic integrals and
stochastic integral equations. Hamonic and superhamonic functions are studied in
Chapters 12 and 13. In Chapter 14 the general results are applied to the n-dimensional
Wiener process, [n Chopters 15-17 continuous strong Markov processes on the line are
studied. An appendix on measure theory and partial differential equations is included,

as well as a very complete bibliography on the mothematical theory of stochastic processes.

Khas'minskii, R.Z,, "Ergodic Properties of Recurrent Diffusion Processes and Stabilization
of the Solution to the Cauchy Problem for Parabolic Equations, " Theory of Probability
and Its Applications, Vol. 5, No. 2, 1960, pp. 179-196.

In this paper the existence of a unique invariant measure for Markov processes satisfying
certain conditions is proved. This result is applied to obtain the asymptotic properties of
the solution to the Cauchy problem for the parabolic equation 3u/dt =L u when

t =+ @, It is established thot these properties depend on properties of the solution to
the externo!l Dirichlet problem for the equations Lu =0 ondLu = -1. The sufficient
conditions for them expressed in terms of the behavior of the coefficients in the equation
Lu = du/dt are given in the cppendix . (Author's summary)

Wong, E. and Zakai, M., "On the Relcotion Between Ordinory and Stochastic Differential
Equations, " Report No. 64-26 Electronics Research Laboratory, Univ. of California,
" Berkeley, Calif., 1964,

This paper considers the following problem: let x_be a solution (in the sense of It§ ) to
the stochastic differential equoiions dxf =m(x, t)dt + o (x, , t}) dy. where Y, is the
Brownian motion process. Let x (®} be the solution to the ordinary differential eqt;cyion
which is obtained from the stochastic differential equation by replacing y, with Y, n
where y \"/ s a continuous piecewise linear approximation to the Brownian motion and y
converges toy asn - ®, Does the sequence of solutions x \"V converge to x_? It is
shown that the answer is in general negative; it is however, shown that x _\"/ "converges in
the mean to the solution of another stochastic differential equation which is: dxf = m(xt )

d0o (xf , B

ax'

(n)

1
dl'+-2—0'(xt,1)( )dt+0(xt,t)dyt.
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It8, K. and H.P. McKean, Jr., Diffusion Processes and Their Sample Paths , Academic
Press Inc., New York, 1965.

This book presents a thorough mathematical treatment of diffusion processes: Chapters 1
and 2 describe the properties of Brownian motion. In Chapter 3 the general 1-dimensional
diffusion process and its differential operators are defined. In Chapter 4 the differential
generators are calculoted by methods similar to those of Dynkin. Killing times and local
and inverse local times are considered in Chapters 5 and 6. Chapters 7 and 8 are devoted
to Brownian motion and diffusion in several dimensions. The book concludes with an
extensive bibliography on diffusion processes.
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3. STOCHASTIC STABILITY THEORY AND RENEWAL THEORY

Bershad, N. J., and P. M. DeRusso, " On the Moment Stability of Gaussian
Random Linear Systems", IEEE Trans. on Auto. Contr., Vol. AC-9, No. 3;
July, 1964; pp. 301-303.

In this paper upper bounds on the moments of stationary Gaussian random parameter linear
systems are derived. The main result is the following theorem: Given the differential
equation

m
Ly Lv®] + S a0y = o)
1=0

2
m<q, Y( )(0)=0, t=ol ceey, q < 1
where L is a constant parameter qth order differential operator, and the @, (1) are

stofionorg, mean-zero, continuous-in-the-mean Gaussian processes, possibly correlated
with each other. Then

lim |E {yh(f)} | <ce™ [ a - %ca So]t

t>o
where
Lq[w(»] = 6(1)
K &
ce ' = f(1) > ( )I wE Py
P
for

k=0,1,2, eee, m p=0,1, vee; ki ¢, 0, t>0
J

m m k o
5°= Z 2 Z Z f IE{Otk(p)(t) aj(q)(t+‘r)}l
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Upper and lower bounds for |im E{y(f)} are obtained for the system
tae

Lq y(t) +ay(y®) = 6.

Bershad, N.J., "On the Stability of Randomly Time-Varying Linear Systems", IEEE Trans.
on A/C; Vol. AC-9, No. 3; July, 1964; p. 319,

In this note sufficient conditions are stated for a random linear system to be stable according
to the following definition of stability: if H (t, v; w) denotes the random response of the
system at time t to an impulse applied at time t - v, then the system is stable if any only if

Prob{ f!H(t, v;w)ldv <cl < = for all t}=l
0

Bertram, J. E. and Sarachik, P. E., "Stability of Circuits with Randomly Time-Varying
Parameters", IRE Trans.on Circuit Theory Vol , CT-6, pp. 260-270, 1959.

This paper gives-sufficient conditions for stability, asymptotic stability and global
asymptotic stability in the mean in terms of a Lyapunov function possessing certain properties.
Their results state that if:

(@) A function V(x, t) and its first partials in x and t exist and are continuous
b) v(0, ) =0
© Vix, ) > alldl forsome @ >0

then stability in the mean is guaranteed by E {\./(x f)} < 0 and asymptotic stability in
the mean is guaranteed by E {V(x, f)} < -g (” xil) where g, (0) = O and 9 (*) isa
continuous increasing function. Global asymptotic stability in t!\e mean is guaranteed if
in addition V(x, 1) £ 9o dixlly where 9 is the same kind of function as 9y

Bucy, R. S., "Stability and Positive Supermartingales”, Jour. of Differential Equations,
Vol. 1, No. 2, pp. 151-155, April .1965.

This paper presents sufficient conditions for stability in probability and for asymptotic
stability almost everywhere for the nonlinear difference equation x = f(x ., r ).

- . n n-1’ 'n-1
The principal results are the following theorem:
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Suppose these exists a positive definite continuous function V continuous at ® such that
V(o) = 0 and the sequence V(@ (n, x,) = x ) forall x, € C(M, x ) isa supermartingale
with xq N equilibrium point of the system.” Then Xg 15 stable relative to C(M, xo).

Cox, D. R., Renewal Theory, John Wiley & Sons, Inc., New York, 1962.

This monograph gives a thorough treatment of renewal theory. Among the topics included
are: the distribution of the number of renewals, the superposition of renewal processes, and
altemating renewal processes. Applications to probabilistic models of failure and strategies
of replacement are also included.

Darling, D. A. and Siegert, A. J. F., "The First Passage Time for a Continuous Markov
Process", Annals of Mathematical Statistics, vol. 24, 1953, p. 624,

This paper solves the first passage problem for a strongly continuous temporally homogeneous
(i.e. stationary) Markov process X(t). The Laplace transform is used to obtain the distribu-
tion of T, (x), a random variable giving the time of first passage of X(t) from the region

a >X() ¥b when a > X(o) = x > b, From the distribution of T , the distribution of
the maximum of X(t) and the range of X(t) are calculated. Certain statistical problems in
sequential analysis, nonparametric theory of "goodness of fit," and optional stopping are
included to illustrate the results.

Gersch, W., "The Sclution, Stability and Physical Realizability of the First Order Linear
System with White Noise Parameter Variations," 1966 JACC Proceedings, pp. 435-440.

This paper is concerned with the interpretation of white noise parameter first-order differential
equations. It is indicated that a deterministically unstable first-order system can be stabilized
with a white noise parameter variation. Various forms of stochastic stability definitions are
examined with reference to the first-order system.

Khas'minskii, R.Z., "On the Stability of the Trajectory of Markov Processes," PMM Vol. 26,
pp. 1025-1032, 1962.

In this paper necessary and sufficient conditions are established for stability with probability one
of the origin of the n=-dimensional system

x=b(x, t)+0o (x, r)g

where g is n-dimensional white noise and o isannxn mafrb&wifh components a, . . The
principal result is the following theorem: 1f (1) a,, (x) = 0(|x| ‘), bi, ) =0(x|), X0 and 2)

some continuous function m(x), which is posifiverhen x #0, and for all real )\,L the inequality
n n 9
L g .xx z2mk) I )\
1,01 W U J =1 v 113



is valid then a necessary and sufficient condition for stability with probability 1 is the
existence, in some neighborhood of x = 0, of a continuous non-negative function V(x)
which vanishes only at x = 0, and for which ;( V(x) £ 0, where

22 -
L ) = 2 az it ")'aTB(x_.) +th(" x) aa(x)
t,J=1 R = :

This result is similar to that of Kushner. However, restriction (1) is explicitly mentioned
in this paper whereas in Kushners' paper it becomes evident only upon examining the
examples,

Kozin, F., "On Almost Sure Stability of Linear Systems with Random Coefficients",
Jour, of Math. Physics, Vol. 43, pp. 59-67, 1963.

This paper presents a sufficient condition for almost sure asymptotic stability in the large
for linear systems with continuous, stationary, ergodic coefficient processes. The main
result is the following theorem:

If the solution of the constant coefficient system x = Ax is asymptotically stable in the
large, and if the non-identically zero elemenfs{ftj(t); tefo, m)} of the matrix F(t)

of the system x = [A + F(1)] x are stochastic processes which satisfy certain other
conditions, then there is a constant a’ > 0 depending upon the matrix A such that

E {}!I F(f)||}< o’ implies that the solution of x =[A + F(t)] x is almost surely asymptotically
stable in the large.

An example is included of a second-order system where the constant coefficient terms con-

stitute a damped oscillating system.

Kozin, F., "On Relations Between Moment Properties and Almost Sure Lyapunov Stability for
inear Stochastic Systems"”, Jour. of Math. Anal. & Appl., Vol. 10, pp.342-353, 1965,

This paper presents a sufficient condition for almost sure asymptotic Lyapunov stability in
the large. The major result is the following theorm:

If for x°€ Rn' t >0, the solution process of the system

x = [A + B(H] x

(where A isa constant n x n matrix and B(f) isan n x n matrix whose non-identically
zero elements are stochastic processes) satisfies
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[ et xg 11} 0 <=

t
[o]

then the stationary solution Xp T Xy T oeee TXS 0 is almost surely asymptotically stable

in the Lyapunov sense in the large relative to Rn.

The paper also gives two examples investigating almost sure asymptotic stability and
stability in the mean for the system x + f(t) x = 0 where (1) is a sample function
from a random process.

Kushner, H. J., "On The Construction of Stochastic Lyapunov Functions”, to appear in
IEEE Trans. GAC

This paper presents a stochastic analog of the deterministic method of partial integration
for computing Lyapunov functions. Examples are used to illustrate the method,

Kushner, H. J., "Finite Time Stochastic Stability and the Analysis of Tracking Systems".

This paper gives a method for obtaining bounds to the quantities P { sup Ix I > E} ’
*“ogisT !
Px{ sup I an 2 6} P { sup V(xf)z)\} , and P { sup V(xn) 2 K} where the
0snsN ' CosisT “osisT
stochastic processes X t< T, or x s 0 < N, are components of Markov processes

(continuous or discrete parameter, respectively); P_(B) is the probability of the event B
given that the initial state x equals x; and V(x) is a continuous non-negative function.

The method of obtaining estimates, presented in a number of theorems and corollaries, involves
finding stochastic Lyapunov functions. Thus the method suffers from some of the practical
deficiencies of the Lyapunov function approach to the stability of ordinary differential
equations. Examples are included to iliustrate the method.

Kushner, H. J., "Stochastic Stability and the Design of Feedback Controls", Tech.
Report 65-5, Center for Dynamical Systems, Brown University, May 1965,

This report is concemed with stochastic extensions of various techniques for using the
second method of Lyapunov to aid the construction and analysis of the feedback control
system dx = f(x, u)dt + O(x, u) dz. To each control u there is the associated cost

Cu(x) = E: fu k(xt, ut)dr where Tu is the random time of arrival at 35, the boundary
0
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ofaset S, and k(x, u) is continyous and non-negative. The object of the control

system is to transfer x = x_ to 3S in finite average time and minimize C (x). Theorems are
proved comparing min CY(X) with certain non-negative, scalar valued functions V(x).
Examples are presented to illustrate application of the theorems to the problem of choosing

and analyzing the effect of feedback controls for several stochastic systems.

Kushner, H, J., "On the Stability of Stochastic Dynamical Systems”, Proc of N, A. S .,
Vol. 53, pp. 8-12, 1965,

This paper presents several results concerning a Lyapunov function approach to the
stability of stochastic dynamical systems. Theorems on stability with probability one and
on asymptotic stability with probability one are proved for the discrete~time system

X 0" f(xn, yn) where Y, is a Markov process.

Kushner, H. J., "On the Theory of Stochastic Stability", Tech. Report 65-1, Center for
Dynamical Systems, Brown University, January 1965,

This report establishes a number of theorems on stability with probility one and on asymptotic
stability with probability one for the continuous-time system dx = f(x) dt + 0(x) dz where
z is vector Brownian motion with independent components. Examples are included to
illustrate application of the theorems for linear and nonlinear systems.

Samuels, J. C., "On the Stability of Random System", J. Acoust. Soc.; Vol, 32;
pp. 594-661; May, 1960. .

This paper develops a theory for the analysis of a linear system in which many parameters
vary as white noise stochastic processes. Mean square stability criteria are obtained for
such systems and an example of an RLC circuit with both resistance and capacitance
random variations is included.

Samuels, J. C., "On the Mean Square Stability of Random Linear Systems”, 1RE Trans.
on Circuit Theory, Vol, CT-6, pp. 248-259; May, 1959.

This paper develops the mean square stability theory of Samuels and Emigen and extends
it to systems containing one or more stochastic parameters which may be dependent. An
example of an RLC circuit with a narrow~band capacitance variation is considered.

Samuels, J. C., and A, C, Ermigen, "On Stochastic Linear Systems", J. Math. Phys,,
Vol. 38; pp.-83-103; July, 1959.

This paper is concerned with an analysis of nfh order linear systems with random coefficients,
Three types of systems are described: systems with small randomly varying coefficients,
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systems with slowly varying random coefficients, and systems containing only one random
coefficient. For the latter class the authors define "mean square stability" in terms of the
second moment of the position component of the state vector and analyze the stability

of an RLC circuit and a bar under a random axial load.

Siegert, A, J. F,, "On the First Passage Time Probability Problem”, Physical Review, Vol.
81, No. 4 pp 617-623,

Using an integral equation, this paper derives an exact solution for the first passage time
probability of a stationary one-dimensional Markov process. A recursion formula for the
moments of the first passage time probability is given for the case where the conditional
density satisfies a Fokker-Planck equation. The Wiener=Rice series for the recurrence
time probability density is derived for a two-dimensional Markov process.

Wang, P. K. C., "On the Almost Sure Stability of Linear Stochastic Distributed-Parameter
Dynamical Systems", presented at ASME Winter Annual Meeting, 7-11 November 1965.

This paper presents sufficient conditions for almost sure stability and asymptotic stability of
linear stochastic distributed-parameter dynamical systems described by linear partial dif-
ferential or differential-integral equations with stochastic parameters. Examples are given
to illustrate the results,

Wonham, W. M., *On First Passage Times For Randomly Perturbed Linear Systems” (in pre-
paration).

This paper gives a method for estimating the probability of the first passage time to the
boundary of a domain D. The principal result is the following theorm:

Let V(x) be a twice continuous differentiable function such that
V(x) = 0, xeb

and
0 V(x) <1, xeD

where D is an open connected domain D with smooth boundary D, such that D contains
the origin x = 0, If there exists a constant X > 0 such that

;([V(x)] + AV(x) 20, xeD,
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whereo'c is the differential operator for the system, then
P(t, x) > V(x)e-kt , t>0

where
Pt x) = P{x(s) €D, 055 <t] x(0) = x}

When L + X is self-adjoint an upper bound on the principal eigenvalue X, can be
obtained by Dirichlet's principle. When & + X is not self-adjoint there appears to be no
straightforward means for obtaining X] . Examples for a number of linear systems are

used to illustrate the proceduyre.

Wonham, W. M., "A Lyapunov Method for the Estimation of Statistical Averages",
Tech. Report 65-6, Center for Dynamical Systems, Brown University, June 1965,

In this paper o Lyapunov criterion is obtained for the existence of the stationary average
E { L(x)} for the system
x =f() + Gk &M, t>0

where x, f are n-vectors, G isann x n matrix, £ (t) is n~dimensional Gaussian white
noise, and L is an arbitrary nonnegative function, A method for calculating an upper
bound for E { L(x)] is also presented. The results are applied to an example where the
unperturbed system x = f(x) is of Lur'e type.
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4, SPECIFIC PROBLEM SOLUTIONS

Barrett, J. F., "Application of Kolmogorov's Equations to Randomly Disturbed Automatic
Control Systems," Proceedings of First IFAC Congress, pp. 724-733, 1960.

This paper gives the steady state solution to the forward equation for the first and second-
order systems

) =-f(>l)+€l
(b) ¥ +ay +fly) =¢
)

e=-y+§&
and for the nth order system
(d y=Ay + &

where f(y) in (o) and (b) has a saturating characteristic, A in (d) is a constant nxn matrix,
and £ is Gaussian stationary white noise.

Bergen, A.R,, "Random Linear Systems: A Special Case," Trans. A. IEE, Vol. 80
(Applications and Industry), pp. 142-145; July , 1961,

In this paper frequency domain techniques are used to calculate the mean-square error for
a linear control system with a single random gain element.

Blachman, N.M., "On the Effect of Noise in a Non-linear Control System, " Proc. First
IFAC Conference, Moscow (1960), Vol. 1., pp. 810-815,

This paper considers the effect of weak white noise on a weakly-damped nonlinear
oscillatory system. When the energy of the system reaches a certain point unstable
oscillations occur. The problem is to determine the probability of transistion of the system
through the boundary of instability. The steady-state solution to the problem is obtained.

Gray , A,H., "First-Passage Time in a Random Vibrational System, " presented at ASME
Winter Annual Meeting, 7-11 November 1965,

In this paper the first passage-time problem for a random second-order vibrational system is
solved by means of an approximation which converts a two-dimensional Markov process

to a one-dimensional Markov process. Laplace transforms are used to evaluate the mean
square time to faii sre. The problem arises in determining structural response to earthquakes.
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Kushner, H.J., "Finite Time Stochastic Stability and the Analysis of Tracking Systems."

This paper gives a number of examples illustrating calculation of a bound on-the probability
that a simple tracking system, will exceed its maximum tracking error. The method involves
finding stochastic Lyapunov functions and applying certain theorems developed in the paper.

Ruina, J.P. and Van Valkenburg , M.E,, "Stochastic Analysis of Automatic Tracking
Systems, " Proc. First IFAC Conferer-e, Moscow (1960), Vol. 1., pp. 810-815,

This paper presents an analysis of automatic tracking systems using the Fokker-Planck
equation to find the probability density of the output of the tracking system. A bound on
the probability of losing track is found for the system

x =-ax + £ (1)

where £ (t) is white Gaussian noise. |In an interesting discussion to this paper R.L,
Stratonovich describes a method for obtaining an exact solution. The Stratonovich approach
uses the method of reflections, similar to the method used in electrostatics.,

Wonham, W.M., "On the Probability Density of the Output of a Low~Pass System When
the Input is a Markov Step Process, " Trans. IRE PGIT. IT-6 (5), 1960, pp. 539-544.

In this paper forward equations are derived for the (n + 1) - dimensional Markov process
generated when a Markov step process {s (t) } is the input to an nth order system, x = f (x,s).
An interesting analogy is drawn between the forward equation and Boltzmann's equation

in the kinetic theory of gases. As examples, a symmetric three-level signal smoothed by

an RC low=pass filter and a doubly integrated telegraph signal are considered.

Wonham, W.M., "Stochastic Analysis of a Class of Nonlinear Control Systems with Randon:
Step Inputs, " JACC Preprints, 1962.

This paper considers the control system
Y=u XM, Y1

where Y(t) is the output at time t and the input (desired output) { X () } is a Markov step
process. The forward equation for the joint process { X(t) , Y (1) }is derived and solved
for a relay system in which { X (t) } is a simple jump process.
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5. RELATED MATHEMATICAL LITERATURE
() Deterministic Stability

LaSalle, J.P. and Lefschetz, S., Stability by Lyapunov's Direct Method, Academic
Press, New York, 1961,

This book contains a description of Lyapunov's second method for detemministic systems, including
treatment of Lagrange Stability, Ultimate Boundedness, and the problem of Lu're.

(b) Partial Differential Equations

Freidlin, M.l., "The Dirichlet Problem for an Equation Involving a Small Parameter and
with Discontinuous Coefficients, " Soviet Math. Dokl., Vol. 3, pp. 767-770, 1962.

This paper considers the following problem:

2 O n aua n aua
s+ Z bt(x) T)"’tz bt(x) 3

X
rJ =1 Xy Xy 1=1 1 1=l 1

=0, x ¢D-S

ua(x) and grad ua(x) are continuous for x €D

where D is a given domain with smooth boundary T in an n-dimensional Euclidean spoce
R", S isan (n-1) dimensional manifold SCD, and the above elliptic operator is nondegenerate
inDUT.

'. . ® . ® L3 - . ®, - . a
Sufficient conditions are established for the existence of the limiting solution u(x) = lim v~ (x).
a-0

Freidlin, M.l., "A Mixed Boundary Value Problem For Elliptic Differential Equations of
Second Order With a Small Parameter, " Soviet Math. Dokl., Vol. 3, pp. 616-620, 1962.

This paper considers the following problem:

n o n o
L ua(x) =‘;—32 otj(x)—aa-a—ué— T bt(x) Bau =0,xeD
1,0,=1 1771 1=l 1
o
v (x)lxel" =‘b(x)
1
(¢
du | =0
ol xel"2 -
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where D is a given domain with boundary T in an n-dimensional Euclidean space R" , L
isasubset of TopeninT', T =T'-T_, ¢ (x) isa continvous functionon T, , J?,(x)2
is a field of functions whose third derivatives are continuous, and the above elliptic
operator is nondegenerate on DUT.

Sufficient conditions are established for the existence of the limiting solution u{x) = lim v (x).
a-0

Sobolev, S.L., Partial Differential Equations of Mathematical Physics, Pergamon Press,
1964,

This book is based on o coruse of lectures given in the State University in Moscow and
the chapters are arranged into thirty "lectures". Topics covered include the theory of
integral equations, Green's function, and Lebesque integration. Examples from heat
condition, hydrodynamics, and the theory of sound are used to introduce and illustrate
the mathematical techniques.
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6. PHYSICAL SOURCES OF DISTURBANCES

"The Natural Environment for the MOL System Program", AFCRL-64-845,
(AD 455 556), 25 October 1964.

This repoit discusses in some detail the space environment between the altitudes of 100 km
and 700 km above the Earth's surface. The following are examined in some detail with
some estimates of their probabilistic occurrences

Energetic particle radiation
Solar Fleses

Metcoroids

Solar Electromagnetic Emissions
Galactic Cosmic Rays

O bW —

Alexander, W. M. "Cosmic Dust", Science, Vol. 138, No. 3545, Dec. 7, 1962,
pp 1098-1099

The cosmic dust experiment of Mariner H is described and an estimate of the flux of dust
necessary for .9 probability of at least one impact for the time of measurement is given as
6x 1076 porficles/mz-sec, Assuming an average dust ifglocity as 55 km/sec, the mass of
the dust particles was estimated tobe 1.3+ 0.3 x 10 '~ gms

Briggs, R.E., "Steady State Space Distribution of Meteoric Particles under the Operation
of the Poynting~Robertson Effect", The Astronomical Journal, Vol. 67, No. 10,
Dec. 1962, pp. 710-723.

A model is proposed for the distribution of meteoric particles in interplanetary space The

Poynting-Robertson effect is applied to derive the steady state distribution of orbits, and to
compute the space density of particles at many points in the solar system. The space den-

sity ns(o . z) of particles having radii greater than s is

@

ns(o,z)‘—'—L’z) f 3

H . _p
c 7 * T
3 s p s p s

])ds

where p = radial distance from the sun in the plane of the ecliptic
z = distance normal to the ecliptic

Dalton, C.C., "Cislunar Meteoroid Impact and Puncture Models with Predicted Pegasus
Satellite Punctures”, NASA TM X-53187, 13 Jan. 1965.

In cislunar space at a distance of h km from the earth’s surface, (102 < hs 106) , the
model for the mean meteoroid flux F_ (meteoroids/sec-m<) of a mass equal to or greater
than M grams (1000 <M< 1) impgcﬁng a randomly oriented orbiting vehicle is pre-
dicted to be

' log Fs = 14\.9210‘06+32|09M
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0 26(log h - 2)

where B2=-|—0 34e +0 24(log h - 2)

Using the above, and a model for the puncture flux, and an estimated mean meteoroid

density of 0.44g/cc and a velocity of 26 7 km/sec a flux distribution is predicted for a
Pegasus satellite

Evans, J W , (ed ), The Solar Corona, Academic Press, New York, 1963

This text describes the basic solar flare event and all flare associated phenomena  No
statistics concerning the occuirence of these events are set forth nor are any mechanisms
proposed which might yield a better understanding of the solar-flare event

McDonald, F B , (ed.), "Solar Proton Manual", NASA TR-R169, December 1963

This report highlights the sun’s activity from 1960-1962 with detailed correlation between
sunspots (solar flares) and particle flux at various earth locations. Due to the sun’s rotation,
there is a preferred orientation of the solar flux impingement on the earth No information
is given as to the estimated original flux or its decay in space or time

Miroshnichenko, L | , "Cosmic Rays from the Sun", Piroda {Nature), Number 1, Moscow,
Jan 1965, pp 25-34 (Translated as N65-20625 or N65-18183)

This report studies Solar Corpuscular Radiation in the high energy closs {(with energy greater
than lgAEV(nucleon). These particles which consist of protons and heavier nuclei in the

1 - 107 MEV range are emitted by the sun during chromosphere bursts and closely resemble
cosmic rays The energey density reaches a maximum of 1077 ergs/cm® During one
period of high solar activity a solar_flux with energies of 49 - 500 MEV reached an
intensity of 1 5 x 107 particles/cm® - sec was observed.

Rohrbach, E J., and Goldstein, H S , "The Space Radiation Environment", Machine
Design, Vol 34, No 25, Oct 1962, pp 146-150

Discussion of the two types of space radiation, namely, solar and galactic, are aescribed
in terms of the number of particles with given energy or less per unit time per unit area
Poisson distributions are taken to be characteristic of both types of radiation

Whipple, F. L "On Meteoroids and Penetration"”, J of the Astronautical Sciences, Vol 10,
No. 3, Fall 1963, pp 92-94

By reviewing photographic meteor data the following values are obtained for a zero
magnitude (visual) meteor.

meteoroid density . 0.44 gr/cc

velocity 30 km/sec
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APPENDIX 2

MONTE CARLO SIMULATION PROGRAM

Purpose
To determine the lifetime of a process govemed by the stochastic differential equations
X = f(x, £ » t) X(fo) = xo (l)
where x is the state vector dim < 15
t is the time
£ is a vector of random noise, gaussian distributed with zero mean and standard
deviation O
Method

Equation (1) is integrated starting at time fo until either (1) the time t exceeds some limit

T or
(i1) until |xt| exceeds some limit Bt
The integration step number (integration step size times no. of steps) at which this occurs is

recorded. An ensemble of trajectories is run and the number of trajectories leaving at each step is
recorded.

Usage

The program requires that the user supply a subroutine DERIV, to compute the derivatives

i.e., DX(1) = F(X(J), RV(U),T)

DX = derivative Xy,
X = state vector
RV = random variable vector, gaussian distributed,

T = time
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The calling statement is

CALL DERIV (DX, X, RV, T)

Additional input data are stored in COMMON - COMMON BLC($), 1B(8), H, TO' RN FC(5)
1

in data blocks IB and FC.

Outgut

Program prints first trajectory and tabulates no. of trajectories leaving at each step.

Ineut
Card # Format

1 (16)
(NA6)

2 (15)

3 (7F10.5)

4 (7F10.5)

5 (7F10.95)

6 (7F10.5)

126

No. of steps, at step size H
No. of ensemble members
Frequency of print-out

Fixed point random number

Dimension of state

input Vector IB(l)

Step Size

. DescriEfion
Run No.,

Alphameric Description

Initial time T

Initial random number

Input vector FC(I)

X

Standard deviation

0

i

0

Column
——————

1-6
7-72

1-5
6-10
11-15
16-20
21-25
26-30
31-70

1-10

11-20
21-30
31-70



$IBFTC MARKOV NODECK

[g]

QoGO0 OOO0COOOOO0 OO0 OO OONOO

GOO

RS ERE AR SRR R R ECAE KX E R AR KGR X AR CE AR R AR R AR KX AR KK KRR KK C R E KR KKK

PURPUSE
MARKQV CUMPUTES THE PRUSABILITY THAT STATE OF A MARKOV PROCESS
DESCRIBED BY THE VECTUR DIFFERENTIAL EQUATION

.0XS/DT= Fl{ XSy RV, T )
NHE RE
RV 1S RANDOM NOISE wWITH STANDARD DEVIATION VARN
uxs = JERIVATIVE OF THE STATE XS
XS = STATE
WILL EXIT FRUM AN N OIMENSIONAL BOX DESCRIBED 8Y THE VECTOR B8X

SUBROUTINES REQUIRED
DERIV USER PRUVIDED TO COMPUTE THE DERIVATIVES

JINPG
RANDG
INPUT DATA
NMAX = NU OF STEPS
MSMB = NO OF ENSEMBLE MEMBERS
MPRN = FREQUENCY OF PRINT-0UT. NO OF STEPS
BETWEEN EACH PRINT

IRAND = £ IXED POINT RANDUM NO.
Fl = RANDOM FLOATING PT NO.

12 DIMENSION OF STHE STATE VECTOR
XZERU = STARTING STAE

8Xx D IMENSIONS OF 80X

VARN STANDARD DEVIATION OF NOISE

ARG E ERER S AR DRk ARk Rk E R AR EE 2 kA RR AR R ke kR kR e R Ak kR kkkE e R EkE &K

COMMUN NMAX MSMBs MPRNe IRANDe I19424103,14415,16417,18,19,110
COMMUON X0O,By FLl,F24F3,F4,F5

DIMENS IUN XS(15), DXS{15), XZEROD({15), RVI15),VARN(15), BX(15)
DIMENSION ALP{11)+IRE(5000) » G{8) o ISTEP{20)

READ INPUT DATA AND INITAILIZE PROGRAM

1 REAV (5,901} INO, (ALP{I),I=1,11)
901 FORMAT {16, 1146 )
READ {5,902) NMAX , MSM8, MPRN, IRAND, 1I1l, 12, 13, I4, I5,16,
117y I3, 19, 110
902 FORMAT( 14153)
READ (5,903) X3y By FLyF2.F34F4,4F5
903 FUORMATI(7 +10.5)
READ (5,700) (KZERDLL)yI=1, 12 )
READ (5,700} {VARN(I), 1I=1, [2)
READ (5,700) (ex{i1), I=1, 12 )
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[z e K al

700 FURMAT(7 ELO0.4}

WRITE 16,800) INO, (ALP(I),
800 FURMAT (1Hl, 20X, 30H RANLOM
110X, 1O0H RUN NO.  [5, 10X,
IPRL = 2%I1+l
IPR2=1PR1+1
RN =F1 v
: INITIALIZE RANDOM
DO 10 I=1, IRAND
10 RN1=RANDG(RN)

ARITE(64802) NMAX MSMB

802 FURMAT (10X, 13H NO.OF STEPS
lE 157 )
WRITE( 69 701)
WRITE(64702)
wRITE{ 64 703)
FORMAT(1H /7 10X,
FURMAT{1H / 10X,
FURMAT (1H / 10X, 15H BOUND

CUMPUTE THE STATE
B¢+ FLJATINMAX)*XO
1o NMAX

701
702
703

TLIM =
Lo 12 I =
12 IRELI)=0

INITIALIZE FOR

15 Lo
N=1
=8
{Sd =
DO 16
XSil) =
CONTINUE
VO 17 I=1,12
KVII) = VARN(I)* RANDGIRN)
CALL UERIV(DXSy, XSy RV, T}
CALL JINPGU XS+DXSe T,
IFL ISW. EQ. O )} GO Tu 18
[F{ IENe NE. 1) GO TUO 22
WRITE( 69704) No To UXS(I)y
704 FORMAT(1lH / 10X,
i 3( 10X, 5€E20.8/ ) )
22 N= N+l
0 23 I=1,12
IFL ABSIXS{I))a GT.
IF( Ne LE. NMAX) GO
64 T 30
25 IRe(nN~-1) =
30 CONTINUE
WwRITE (6,800) IND, (ALP(I),
ARITE(6,802) NMAX ,MSMB

30 TEN=1,MSMB

-1
I=1,12
XLERO(1)

23
70 20

{REI{N-1) +1
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(XZEROLI),I=1,
(VARN (I),1=1,
(BXL{I)s1=1,12)
15H INITIAL STATE
15H STD DEV

STARTY

TLiM, X0,

10H STEP NO.

[=1,11 )

PROCESS SIMULATION /
11A6/7)

NUMBER GENERATOR AND SUMMATION

I5, 10Xy, 27H NO. OF MEMBERS JF ENSEMBL
12)

12 )

/ 3(5E20.8
/ 3(5€20.8
/ 3(5€20.8

/)
/)
/7))

OF ENSEMBLE

ISWy 12,EMAX )

12)
I5,

1=1,

5Xe 6H TIME F10.5/

BXx{I) ) GO TO 25

i{=1l,11 )



(2N N gl

100

110

150
940
941

ACCUMULATE
PRINOUT 1

Lo 100 1=1yNMAX
IREtI+1) = IRE(I+
M10 a=MPRN*10
NULIN = NMAX /M10
IF( MODINMAX, M10)
NULIN = NOL IN+1
vl 150 =1, NULI
LL = M10*%(1-1) + MP
L10 = L1+ 9%MPR
IFl L10. LE. NMAX)
L10 = NMAX
ISTEPI 1) =L1

VG 120 J=2, 10
ISTEPLJ) = [STEP(J-
WRITE (64 940) LIS
WRITE (64 941) (IR
CUNT INUE

FORMAT (LH // 5X, 15
FORMAT (5Xy 22H N
GO TO 1

END

AND PRINT

SUM

S 10 POINTS PER LINE

1) «IRELD)

« EQ. 0) GO TO 110

N
RN

N
GU TO 115
1) + MPRN

TEP{J) e J=1410)
E(Jdy J=LiosL1O

H STEP NUMBER
UF MEMBER S.GT.B

» MPRN

v 10X,
v 33Xy

)

10110 )
10 110}
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$IBFTC DERIV NODECK
SUBRUOUTINE ODERIVIDY,Y, RV, T)

SAMPLE SUBROUTINE DERIVATIVE

FUEL-UPTIMUM SINGLE-AXIS ATTITUDE CONTROL

OO0

REAL K
DIMENS ION DY(3),Y13) ,RV(2) __
COMMON I11(14),F(3) F2,F3,Fa,F5
K = F2
A=F3
C GENERATION OF FEEDBACK CONTROL
S = Y{l) + K¥Y(2)
IF(S) 10,10,11
10 IF1Y(2)) 1,252
1 U= 1.0
60 10 50
2 U =10.0
GU T0 50
11 IFLY(2)) 2,2,3
3 U =-1.0
GO TO 50
C EQUATIUNS OF MOTION
50 DY(1) A¥XU  + Y{3) +RVI1)
DY {2} Y{1)
DY(3) RVI2)
RE TURN
END
$SENTRY MARKOV MARKOV
$IBSYS
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RANDOM PROCESS SIMULATIGCN -
SINGLE AXIS ATTITUTDE CONTROL

RUN NO. 60166
NOJOF STEPS 240
INITIAL STATE
0. -0.
STC CEV
0.1C00000CE 0] 0.
BOUNC
0.96999998E 07
STEP NC. 1
-0412842491E-01
STEP NC. 2
~0,82720243E-01
STEP NC. 3
-0,67890835E-01
STEP NC. 4

-0411039052E 00

STEP NC. 5
«0,10097639E 00

STEP NC. 6
~-0.15027185E 00

STEP NC. 7
-0,16595329E 00

STEP NC. 8
-0.10820085E 00

STEP NCe. 9
-0.12324748E 00

STEP NC. 10
-0.10095365E 00

STEP NC. 11
=0,65556996E~01
STEP NC. 12
0.47335068E-01
STEP NC, 13
0.70172192E-01
STEP NC. 14
0.65814529€E=-01
STEP NC. 15
0.31558616E=01
STEP NC. 16
0486886139E-01

SAMPLE OQUTPUT

NC., OF MEMBERS OF ENSEVMBLE 20

0.10000000E 01

0410000
0.80063278E-03

TIME

TIME 020000
«0e47589776E=02
0430000
-0¢13476893E=01

TIME

TIME 0440000

~0+21807075E=01

«04¢33345081E~0}

TIME

TIME 060000

«0443919767E-01
TIME 0.70000
=0+58916400E-01
TIME 0.80000
~0472440274E=-01
TIME 090000
~0,83176114E-01
TIME 1.00000
=095938575E-01
TIME 110000
=0,10467781E 00
TIME 120000
-0,10723718E 00
TIME 130000
~0410067324E 00

140000
=0693353354E~-01

TIME

TIME 1.50000

-0,87127298E-01

1.60000
-0479095487E-01
LR

TIME

A 2,05 KsI
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RANDOM PROCESS SIMULATICN

KUN NOs 60166 SINGLE AXIS ATTITUTDE CONTROL A 3,05 Ksl
NO.OF STEPS 240 NO. OF MEMBERS OF ENSEFBLE 20
STEF NUMBER 1 2 3 4 s 6 7 ] 9 10
NO, OF MENMBERS.GT.8 (1] (V] 4 0 [+] [ [1] [+ [+ 0
STEF NUMBER 11 12 13 14 15 16 17 18 19 20
NO. OF MENBERS.GToB o o c 0 ° 0 0 ¢ 0 °
STEF NUMBER 21 22 23 24 25 26 21 28 29 30
NO. OF MEWBERS.GT.B 0 0 c o ° ° ° 0 ° °
STEF NUMBER 31 32 33 34 35 36 37 30 39 40
NO. CF MENBERS.GT.8 0 o c o ° 1 1 1 1 1
STEF NUMBER 41 42 43 hé 43 48 47 48 49 50
NOe OF MENMBERSGT B 1 )} 1 1 1 2 3 3 3 3
STEF NUMBER 51 52 53 56 5 56 57 58 59 60
NO. OF MENBERS.GT.B 3 3 3 3 3 3 3 3 3 H
STEF NUMBER 6l 62 63 64 o5 66 67 Y} 69 70
NO. OF MEMBERS.uT.B 3 3 3 3 3 3 3 4 . 4
STEF NUMBER 7 72 7 14 1 16 7 7 19 80
NOo OF MEFBERS.GT.B “ 4 s 5 5 s s s H s
STEF NUMBLR 8l 82 03 84 e (73 87 (1) 89 90
NOe UF MENBERS.GTWB 5 5 é L] [ 6 7 7 7 7
STEF NUMBER 91 92 93 94 95 96 97 98 99 100
NO. OF MEMBERS.GT.B 7 7 7 7 7 7 7 ] 7 7
STEF NUMBER 101 102 103 104 105 106 107 108 109 110
NO. OF MENMBERS.GT.B 7 7 7 7 7 7 7 1 7 7
'STEF NUMBER 111 12 113 114 15 1e 17 118 i19 120
MOo OF MENBERS.GT.B 7 7 1 7 7 7 7 7 [ ] ]
STEF NUMBER 121 122 123 124 12 126 127 128 129 130
NO. OF MENBERS.GT.B 8 8 8 8 10 10 10 1n 1l 1
STEF NUMBER 131 132 133 134 135 136 137 138 139 140
NOe OF MENBERS.GT.B 12 12 12 12 12 12 13 13 13 13

182 CR-T31 NASA-Langley, 1967 —— 10




